Geodesy and interior structure of Mercury

Tim Van Hoolst
and
the ROB 'planets' team

Royal Observatory of Belgium

February 26, 2007
1 Tidal potential
 Potential
 Response

2 Interior structure models
 Composition
 Core modeling

3 Tides
 Tides
 Love numbers

4 Comparison with other geodesy data: rotation

5 Conclusions
1 Tidal potential
 Potential
 Response

2 Interior structure models

3 Tides

4 Comparison with other geodesy data: rotation

5 Conclusions
Tidal potential (I)

- tidal force = differential gravitational force
- gradient of a tidal potential
 - direct effect of the Sun
 \[
 V_T = -\frac{GM\odot}{d} \sum_{l=2}^{\infty} \left(\frac{r}{d} \right)^l P_l(\cos \Psi)
 \]
 - orbital motion (Kepler’s laws)
 - rotational motion
 - restrict to degree 2
- Venus: 4×10^{-6} smaller
- indirect effect due to planetary effects on orbital motion
- VSOP87 ephemerides (Bretagnon & Francou 1988) valid for several thousand years around J2000.0
Tidal potential (II)

- Tidal deformation and potential can mathematically be described with three spherical harmonics.
- Main period: half a Mercury solar day = one Mercury year (3:2 resonance).
- No simple division as for the Earth: typical periods of zonal, tesseral, and sectorial waves are long period, diurnal, and semidiurnal.

Figure: sectorial waves
Tidal potential (III)

Figure: tesseral waves

Figure: zonal waves
Tidal reaction

Tidal potential causes

- periodically varying surface displacements (Love numbers h and l)
 - estimate for equipotential surface: $\frac{V_T}{g} \approx 1\text{m}$
 - $\delta r = h \frac{V_T}{g}$

- variations in the external potential field (Love number k)
 - estimate: $\frac{V_T}{V} \approx \frac{M_\odot}{M} \left(\frac{R}{a} \right)^3 \approx 5 \times 10^{-7}$
 - $\delta V = (1 + k) V_T$ (at surface)

- surface gravity variations (Love numbers h and k)
 - estimate: gradient of potential: $2 \frac{V_T}{R} = 3 \times 10^{-6}\text{ms}^{-2}$
 - $g = 3.7\text{ms}^{-2}$
1 Tidal potential

2 **INTERIOR STRUCTURE MODELS**
 - Composition
 - Core modeling

3 Tides

4 Comparison with other geodesy data: rotation

5 Conclusions
Basic facts

- mass $M = 3.302 \times 10^{23}$ kg (Anderson et al. 1987)
- radius $R = 2439 \pm 1$ km
- density $\rho = 5430 \pm 10$ kg/m3
- large core
Composition (I)

- **data**
 - large Fe/Si ratio (large core)
 - low surface FeO content (spectral observations)

- **mantle**
 - mantle mineralogy: assume olivine, pyroxene, garnet
 - chemical composition: strongly dependent on formation history (Taylor and Scott 2005)
 - density, rigidity and incompressibility: relatively small differences
 - density variation $\approx 100 \text{ kg/m}^3$ (few %)

- **mantle model**
 - homogeneous density $\rho = 3500 \text{ kg/m}^3$
 - rigidity and incompressibility: same pressure dependence as in upper mantle of the Earth
Composition (II)

core:
- Fe + S (abundant + soluble at Mercury pressures)
- x_S between 0.1 wt% and 14 wt%
- density, rheological parameters corrected for P and T
- γ-iron: fcc phase

FeS phase diagram (Fei et al. 1995)
Core evolution (I)

- models ranging from entirely liquid to entirely solid core
- $\delta\rho$ between solid and liquid $\approx 3.5\%$ (Anderson 2003)
- relatively low pressure compared to Earth: sulfur almost doesn’t solidify with iron ($x_S < x_S^{eut}$)
- pure iron inner core

<table>
<thead>
<tr>
<th>EXP ID</th>
<th>P (GPa)</th>
<th>T (K)</th>
<th>Time (min)</th>
<th>S_{solid} (at.%$)$</th>
<th>S_{liquid} (at.%$)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO141</td>
<td>7</td>
<td>1223</td>
<td>5</td>
<td>0.09 (3)</td>
<td>31.3 (3)</td>
</tr>
<tr>
<td>LO73</td>
<td>8.5</td>
<td>1473</td>
<td>180</td>
<td>0.17 (2)</td>
<td>28.0 (1)</td>
</tr>
<tr>
<td>LO87a</td>
<td>8.5</td>
<td>1473</td>
<td>15</td>
<td>0.16 (5)</td>
<td>28.3 (2)</td>
</tr>
<tr>
<td>LO77</td>
<td>10</td>
<td>1473</td>
<td>10</td>
<td>0.23 (3)</td>
<td>27.5 (5)</td>
</tr>
<tr>
<td>LO91a</td>
<td>10</td>
<td>1473</td>
<td>15</td>
<td>0.21 (5)</td>
<td>27.0 (3)</td>
</tr>
<tr>
<td>LO92a</td>
<td>14</td>
<td>1473</td>
<td>30</td>
<td>0.26 (5)</td>
<td>23.6 (5)</td>
</tr>
<tr>
<td>LO120d</td>
<td>20</td>
<td>1273</td>
<td>70</td>
<td>0.67 (5)</td>
<td>26.2 (6)</td>
</tr>
<tr>
<td>LO133a</td>
<td>25</td>
<td>1223</td>
<td>930</td>
<td>1.1 (1)</td>
<td>–</td>
</tr>
<tr>
<td>LO140a</td>
<td>25</td>
<td>1373</td>
<td>180</td>
<td>1.4 (2)</td>
<td>–</td>
</tr>
<tr>
<td>MO535</td>
<td>25</td>
<td>1423</td>
<td>15</td>
<td>1.4 (1)</td>
<td>23.1 (5)</td>
</tr>
<tr>
<td>LO95</td>
<td>25</td>
<td>1473</td>
<td>30</td>
<td>0.8 (1)</td>
<td>22.0 (2)</td>
</tr>
</tbody>
</table>

Figure: sulfur solidification (Li et al. 2001)
Core modeling (II)

- almost pure iron core, increasing sulfur concentration in outer core
Phase diagrams

- maximum S concentration: eutectic composition \((x_S \approx 22\%) \)

Figure: melting in Fe-FeS (Fei et al. 1997, 2000)

- eutectic reached for large inner core, low pressure
- Ni increases sulfur content of eutectic composition
1 Tidal potential

2 Interior structure models

3 Tides
 Tides
 Love numbers

4 Comparison with other geodesy data: rotation

5 Conclusions
Tidal displacements

4 wt% sulfur, inner core radius=1000 km. Starting from J2000.0

radial (solid line), East-West (dashed) and North-South (dotted) displacements at the equator

solid line: equator (sect.+zonal), dashed line: 30° latitude, dotted line: 60°, dashed-dotted line: 90° (zonal)
EXTERNAL POTENTIAL AND GRAVITY VARIATIONS

Starting from J2000.0

at 85° latitude
MORE accuracy for degree-two: \(10^{-9}\) (Milani et al. 2001)

at equator
• solid cores: 5 times smaller
• Love numbers increase with
 • increasing core radius
 • decreasing sulfur concentration in outer core
• MORE accuracy: $\lesssim 1\%$ (Milani et al. 2001)
• important constraint on core: strong reduction of possible models
Love numbers h

- measurements: laser altimeter + radio tracking of orbiter
- BELA simulations (Christensen et al. EGU2006): accuracy of a few % on h_2
- much stronger constraint on interior form combination of both Love numbers: error on sulfur concentration of a few percent, and on core radius some ten of kilometers
1 Tidal potential

2 Interior structure models

3 Tides

4 **Comparison with other geodesy data: rotation**

5 Conclusions
Forced libration

\[\Delta \varphi = \frac{3}{2} \frac{B-A}{C_m} \left(1 - 11e^2 + \frac{959}{48}e^4 + \ldots \right) \]

- amplitude liquid core \(\approx 2 \times (\text{amplitude solid core}) \)
- for our models: core size is determining factor
- effect of core-mantle coupling < 1%
- constraint on models
- even larger range: fixed \(B - A \) and fixed mantle assumed
GRAVITY FIELD DETERMINATION

- \((\frac{B-A}{MR^2}) = 4C_{22}\)
- presently badly known:
 \(C_{22} = (1.0 \pm 0.5) \times 10^{-5}\) (Anderson et al. 1987)
- MESSENGER: precision below 1% (Solomon et al. 2001)
- MORE: 0.01% (Milani et al. 2001)
Libration

- Alternatively: free libration, but damped

\[P_{\text{free}} = \frac{2\pi}{n} \left[\frac{1}{3} \frac{C^m}{B-A} e^\left(\frac{7}{2} - \frac{123}{16} e^2\right) \right]^{1/2} \]

- solid core: 15.830 years
- liquid core: 10.5 years to 12 years (Rambaux et al. 2007)
- other forced libration periods easily separable (Peale et al. 2007)
Obliquity

\[
\frac{C}{MR^2} = \left[\frac{J_2}{(1-e^2)^{3/2}} + eC_{22}\left(7 - \frac{123}{8} e^2\right) \right] \frac{n}{\mu} \left[\frac{\sin l}{\epsilon_C} - \cos l \right]
\]

- The polar moment of inertia \(C \) can be determined from measuring the obliquity \(\epsilon_C \).
- Relation valid for Mercury occupying its Cassini state
- Theoretical range: about \([1, 2.5]\) arcmin
- Caveat: spin axis does not occupy Cassini state
 - free precession: expected damped
 - spin does not follow Cassini state due to planetary perturbations.
- Margot’s measurements (unpublished) seem to agree with the theoretical values and to confirm that Mercury occupies the Cassini state (Peale 2006, Yseboodt and Margot 2006).
Moments of inertia

- expected accuracy: 1 as, or 1% (RSDI, space missions)
- nominal BepiColombo minimum needed
- libration (C_m) less sensitive to inner core
- Peale 1976: \[
\left(\frac{C_m}{B-A} \right) \left(\frac{B-A}{MR^2} \right) \left(\frac{MR^2}{C} \right) = \frac{C_m}{C} \leq 1
\]
Ground-based observations

- Radar Speckle Displacement Interferometry (RSDI)
 - one-shot precision: 2 arcsec
 - long observation campaigns: 0.2 arcsec
- Margot et al. 2004 (AGU): $\Delta \varphi \approx 60 \pm 6$as, $\epsilon_C = 2.1 \pm 0.1$amin (but new values)
- Although there are still large uncertainties on $B - A$ and obliquity, this value shows that, with very high probability (95%), the core is liquid
- J_2 at the low end of the Mariner 10 values
1 Tidal potential

2 Interior structure models

3 Tides

4 Comparison with other geodesy data: rotation

5 Conclusions
CONCLUSIONS

• main geodetic constraints on core:
 • tides: k_2, h_2, 1% precision, 25% uncertainty (0.4 ± 0.1)
 • obliquity: C, 1% precision (1as), 4% uncertainty (0.345 ± 0.015)
 • libration: C_m/C, 2.5% precision (1as), 15% uncertainty (0.5 ± 0.075 for our models)

• tidal measurements maybe most important for core radius

• different sensitivities to the interior structure

• combination of measurements of the low-degree gravitational field, the rotation, and the tides of Mercury will improve our knowledge of Mercury’s interior