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Abstract

We investigate the dynamics of the spin–orbit coupling under different settings.

First we consider the conservative problem, and then we add a dissipative torque as

provided by MacDonald’s or Darwin’s models. By means of frequency analysis and

of the computation of the maximum Lyapunov indicator we explore the different

dynamical behaviors associated to the main resonances. In particular we focus on

the 1:1 and 3:2 resonances in which the Moon and Mercury are actually trapped.
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1 Introduction

One of the most fascinating puzzles of Celestial Mechanics concerns the different

behavior of satellites and planets under a spin–orbit interaction. More precisely, consider

the coupling between the revolution of a satellite around a primary and its rotation

about an internal spin–axis. As is well known, most of the evolved bodies of the Solar

System (including the Moon) are trapped in a 1:1 resonance, i.e. they always point

the same hemisphere to the host primary. A unique exception is provided by Mercury,

which is currently captured in a 3:2 resonance (i.e., after 2 revolutions around the Sun,

Mercury completes 3 rotations). The different occurrence of the 1:1 and 3:2 resonances is

subject to the variations of some key parameters which enter the model, like the orbital

eccentricity, the oblateness parameter and the dissipation factor (compare with [1], [2],

[4], [6] and [10], [15], [16] for a discussion of capture into resonance).

In the present work we consider a simple spin–orbit model by assuming that the satellite

moves on a Keplerian orbit and that it rotates around a principal axis with zero obliquity

(see, e.g., [1] for further details). Under these assumptions, the equation of motion is

given by a second–order time–dependent differential equation in the angle describing the

relative orientation of the shorter principal axis with respect to a preassigned direction.

However such conservative model is not always adequate to explain the dynamics of the

spin–orbit coupling, since the tidal torque induced by the internal non–rigidity of the

satellite might affect the dynamics. To this end, we consider two different forms of tidal

dissipation as provided by the classical MacDonald’s and Darwin’s torques (see, e.g., [7],

[8]). MacDonald dissipation ([13]) is characterized by a phase lag depending linearly on

the angular velocity, while Darwin’s torque ([5]) uses a Fourier development of the tidal

potential, assigning to each component a constant amplitude.
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The conservative and dissipative models are investigated through frequency analysis

([11], [12]) and by means of the computation of the largest Lyapunov indicator (see, e.g.,

[18]; see also [3] for a discussion of similar problems in the framework of the dissipative

standard map). Notice that we are not interested in the precise value of the maximum

Lyapunov exponent, but only in its value at a given time (maximum Lyapunov indi-

cator). The above techniques confirm that the chance of a given resonance is strongly

affected by the eccentricity and by the dissipation factor. In particular, the synchronous

commensurability is most likely for small eccentricities, while the role of the 3:2 reso-

nance is more important for eccentricities comparable to that of Mercury. As far as the

dissipation is concerned, we remark that the capture into a resonant regime increases as

the dissipation gets stronger, suggesting that in the early stages of the Solar System the

dissipative contribution might have played a key role in the selection of the resonances.

2 The conservative spin–orbit model

Let S be a triaxial satellite orbiting around a central body, say P , and rotating

about an internal spin–axis. Let Trev and Trot be the periods of revolution and rotation

of the satellite.

Definition. Let p and q be positive integers. A spin–orbit resonance of order p : q occurs

whenever

Trev

Trot

=
p

q
.

Our framework is provided by a spin–orbit model obtained by assuming the following

hypotheses (see [1]):
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i) the satellite moves on a Keplerian orbit around the primary (i.e., there are no secular

perturbations on the elliptic elements);

ii) the spin–axis coincides with the smallest physical axis (i.e., it coincides with the

largest principal direction);

iii) the spin–axis is perpendicular to the orbit plane (i.e., the obliquity angle is zero);

iv) any dissipative force (including the tidal torque due to the internal non–rigidity of

the satellite) as well as other gravitational perturbations are neglected.

The equation of motion describing the spin–orbit model under the assumptions i)–iv)

can be expressed in terms of the following quantities: with reference to the Keplerian

orbit of the satellite, let a, r, f be, respectively, the semimajor axis, the orbital radius and

the true anomaly. Assuming that the satellite has an ellipsoidal shape, let A < B < C

be the principal moments of inertia and let x be the angle between the longest axis of

the ellipsoid and the pericentre line. Then, the equation of motion is given by (see [1],

[7])

ẍ +
3

2

B − A

C
(
a

r
)3 sin(2x − 2f) = 0 . (1)
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a) The instantaneous orbital radius r and the true anomaly f are Keplerian functions

of the time. The differential equation (1) depends periodically on the time, through the

Keplerian elements r and f with period 2π. Therefore a periodic orbit associated to (1)

must have a period multiple of 2π. More precisely, a spin–orbit resonance of order p
q

corresponds to a periodic orbit x = x(t) such that

x(t + 2πq) = x(t) + 2πp ,

implying that after q revolutions around the primary, the satellite makes p rotations

about the spin–axis. For a 1:1 or synchronous spin-orbit resonance, the angle x is always

oriented according to the direction of the instantaneous orbital radius, so that the periods

of rotation and of revolution are equal; as a consequence, the satellite always points the

same face to the host body.

b) The parameter ε ≡
3

2

B−A
C

represents the equatorial oblateness of the satellite; its

value is zero whenever A = B, namely when the satellite is symmetric on the equator.

In this case the system is trivially integrable. The true values of the parameter ε for the

Moon and Mercury are, respectively, ε = 3.45 · 10−4 and ε = 1.5 · 10−4.

c) The orbital radius and the true anomaly depend on the eccentricity e and, in

particular, they reduce to r = a = const and f = nt + const (n being the mean motion)

whenever e = 0. Therefore, in case of circular orbits (1) reduces to the integrable equation

ẍ + ε sin(2x − 2nt + 2 const) = 0.

d) The orbital radius and the true anomaly are related to the eccentric anomaly u

by the well–known relations (see, e.g., [14])

r = a(1 − e cos u)
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f = 2 arctan
(

√

1 + e

1 − e
tan

u

2

)

,

whereas u is related to the mean anomaly ℓ through Kepler’s equation ℓ = u − e sin u.

3 MacDonald’s and Darwin’s dissipative models

Different forms of the dissipation might be adopted to express a tidal torque acting

on a satellite under a spin–orbit coupling. Here we focus on two dissipative forces widely

known in the literature under the names of MacDonald’s and Darwin’s torques (see [7],

[8], [14]). The first one ([13]) assumes a phase lag which depends linearly on the angular

velocity, while the latter ([5]) Fourier decomposes the tidal potential, assigning to each

component a constant amplitude. More precisely, following [4] we write the equation of

motion under a MacDonald torque as

ẍ +
3

2

B − A

C
(
a

r
)3 sin(2x − 2f) = −K

[

Ω(e)ẋ − N(e)
]

, (2)

where

Ω(e)≡
1

(1 − e2)9/2
(1 + 3e2 +

3

8
e4)

N(e)≡
1

(1 − e2)6
(1 +

15

2
e2 +

45

8
e4 +

5

16
e6) ,

while K is the dissipative constant depending on the physical and orbital characteristics

of the satellite. In particular, one has:

K ≡ 3n
k2

ξQ
(
R

a
)3

m0

m
,

where k2 is the Love’s number, Q is the quality factor, m is the mass of the satellite, m0

is the mass of the central body, R is the radius of the satellite, ξ is a structure constant
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Table 1

Some physical and orbital constants for the Moon and Mercury

Moon Mercury

k2 0.02 0.4

Q 150 50

m 7.35 · 1022 kg 3.302 · 1023 kg

m0 5.972 · 1024 kg 1.99 · 1030 kg

R 1737.5 km 2440 km

ξ 0.392 0.333

a 3.844 · 105 km 5.79093 · 107 km

e 0.0554 0.2056

n 84.002 yr−1 26.0879 yr−1

such that C = ξmR2. For the Moon and Mercury the numerical values of such quantities

are reported in Table 1. With these values it is KMoon = 6.43162 ·10−7 yr−1 for the Moon

and KMerc = 8.4687 · 10−7 yr−1 for Mercury.

Concerning Darwin’s torque, we assume the following expression of the equation of mo-

tion ([8], [17]):

ẍ +
3

2

B − A

C
(
a

r
)3 sin(2x − 2f) =

7



−K
[

W−2(e)
2sgn(x + 1) + W−1(e)

2sgn(x +
1

2
) + W1(e)

2sgn(x −

1

2
) + W2(e)

2sgn(x − 1)

+ W3(e)
2sgn(x −

3

2
) + W4(e)

2sgn(x − 2) + W5(e)
2sgn(x −

5

2
) + W6(e)

2sgn(x − 3)
]

, (3)

where the coefficients Wk(e) depend on the eccentricity through the following expres-

sions:

W−2(e) =
e4

24
W−1(e) =

e3

48

W1(e) =−

e

2
+

e3

16
W2(e) = 1 −

5e2

2
+

13e4

16

W3(e) =
7e

2
−

123e3

16
W4(e) =

17e2

2
−

115e4

6

W5(e) =
845e3

48
W6(e) =

533e4

16
.

4 Exploration of the dynamics

4.1 Frequency analysis

A widespread technique to study the behavior of conservative systems is the so–

called frequency map analysis, based on the investigation of the frequency as a function

of the perturbing parameter (see [11], [12]). When dealing with a dissipative system

it is essential to perform some preliminary iterations in order to let the system evolve

toward an attractor; after this transient time (typically we perform 5 000 iterations with

step–size 2π/50), we implement frequency analysis in the style of [11] to compute the

main frequencies as a function of the perturbing parameter. Euler method, modified in

order to be area–preserving, has been used (see Appendix A for a short discussion of

the implementation of different integration algorithms). We remark that the transient

time can become very large in the weakly dissipative regime (i.e. when the dissipative
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parameter K is close to zero), since the evolution toward the attractor may be very slow.

Let y ≡ ẋ; with reference to equations (1), (2) or (3), we consider a sample of 3 initial

conditions in the y–variable, while we always set x = 0: y = 0.6, which corresponds

to an initial datum close to the golden sectio
√

5−1

2
≃ 0.618, y = 1 associated to the

1:1 resonance, y = 1.5 for the 3:2 resonance (notice that a p/q spin–orbit resonance

occurs whenever y/n = p/q, where n is the mean motion which has been set to one in

our equations). We studied either the conservative and dissipative cases with different

values of the dissipation parameter, say from the physical values KMoon, KMerc up to

10−4; notice that it is physically meaningless to consider higher values, since they would

exceed the conservative parameter which is about 10−4 in both cases.

The results are presented through graphs showing the behavior of the frequency ω versus

the perturbing parameter ε for different values of the dissipation. We remark that our

finite time integrations allow to detect the presence of a resonant behavior on that

given time interval up to some resonant threshold order, say K (compare with [9]).

When a continuum of tori is displayed, it means that the resonances within the given

domain have order larger than K. Similarly a whole resonant region indicates a regular

librational zone around the resonance; as in the previous case, secondary resonances are

not detected above a given order. The same comment shall apply for the implementation

of the Lyapunov charts provided in the next section.

We now start to deal with the Moon’s sample in the conservative setting: for y = 1

and x = 0 the motion takes always place close to the 1:1 resonance apart for a small

interval in the parameter ε included in [0.12, 0.14] (see Figure 1a) where chaotic motion

is observed (in agreement with Figure 4 top left). The situation is very similar when
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adding the dissipation, even for the dissipative value K = 10−4. A different behavior is

found for y = 1.5, since the motion is trapped in a 3:2 resonance up to ε = 0.094, while

after such threshold one finds chaotic motions (see Figure 1b). We report that for the

initial condition y = 0.6, one finds quasi–periodic attractors up to about ε = 0.065.

Let us now investigate the case of Mercury starting again with the conservative setting.

For y = 1 the motion is trapped in a 1:1 resonance up to ε = 0.067 and for ε in the

interval 0.078-0.114 (see Figure 1c). For y = 1.5, Mercury is trapped in a 3:2 resonance

up to ε = 0.097 (see Figure 1d and compare with Figure 4, top right). This situation

remains quite similar also in the dissipative case up to K = 10−5; a different behavior

is observed for higher dissipations, say K = 10−4, since one finds a trapping into a 3:2

resonance only for ε belonging to the interval 0.04-0.08. Finally, for y = 0.6 we report

that quasi–periodic attractors appear until ε = 0.054 in the conservative case as well

as in the dissipative case up to K = 10−6; for K = 10−5 one finds an invariant curve

attractor for a value of ε slightly smaller, say ε = 0.053, while for K = 10−4 the invariant

curve attractor is found up to ε = 0.052.

From the analysis of Figure 1 we conclude that the 1:1 resonance appears to be quite

robust with respect to the oblateness and to the dissipation for a Moon’s like satellite,

while its occurrence is comparable to that of the 3:2 resonance as far as Mercury’s like

satellites are considered.

4.2 Maximum Lyapunov indicator

A standard tool to evaluate the chaotic dynamics is the maximum Lyapunov indicator

(see, e.g., [18] for a discussion and practical implementations), which provides information
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of the divergence of nearby trajectories. In this section we present some grey scale charts

which show in a convenient way the results for the maximum Lyapunov indicator; more

precisely, periodic orbits are denoted with black, invariant tori are grey, while chaotic

and strange attractors are white. The overall integration time is always set to 1 000

iterations with step–size 2π/50; moreover, in the dissipative cases we performed 5 000

preliminary iterations to get closer to the attractor. Like for the frequency analysis

method we complain that the transient time should be much larger in a weakly dissipative

regime. However, it is important to stress that we do not aim to forecast the motion over

long time scales, but rather to compare the dynamics as the eccentricity is varied.

Figure 2 shows the maximum Lyapunov indicator in the plane y–x for the Moon (e =

0.0549) and for Mercury (e = 0.2056), setting ε = 0.1 and taking K = 0 (conservative

regime) or K = 10−4. This figure is obtained starting with some initial conditions (x0, y0)

and computing the corresponding Lyapunov exponent, whose value is represented within

a grey scale. We remark that in the case of the Moon, the 1:1 resonance is quite big in

comparison to the 3:2 and 2:1 resonances; as the dissipative parameter grows the orbits

inside the librational islands spiral toward the central resonance and new periodic orbits

appear, replacing invariant curves and filling also the chaotic region. Concerning Mercury,

it is evident that the situation is quite different, since the size of the 1:1 resonance is

comparable to that of the 3:2 resonance (see Figure 2, bottom).

It is interesting to compare the Lyapunov indicator maps of Figure 2 (top left and top

right) with the computation of the corresponding Poincaré maps at times multiples of

2π as in Figure 3 . We considered the conservative case and 200 initial conditions of the

y–variable, equally spaced between 0.5 and 2.5 (we always set x = π). We fixed ε = 0.1

and we selected a step–size equal to 10−2. With respect to the Lyapunov charts, the

Poincaré maps allow to detail with greater precision the structure of the primary and
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secondary resonances, as well as the regions filled by invariant tori.

The effect of an increasing eccentricity is shown in Figure 4, which refers to the conser-

vative case with e = 0.3 and e = 0.4. One immediately remarks that the size of the main

resonances decreases as the eccentricity increases; indeed, the 1:1, 3:2 and 2:1 resonances

are extremely small at e = 0.4. A similar behavior is observed for non–zero values of the

dissipative parameter.

Figure 5 shows the maximum Lyapunov indicator in the y–ε plane for a fixed x = 0 and

for different values of the dissipative parameter. Both Moon and Mercury eccentricities

have been considered.

In agreement with the results obtained so far, we remark that in the case of the Moon

the amplitude of the synchronous librational island for a given ε is definitely bigger

than those of the 3:2 and 2:1 resonances; on the contrary, such amplitudes are of the

same order of magnitude as far as Mercury’s eccentricity is concerned. Notice that white

regions correspond to the chaotic separatrix or to strange attractors. The dissipative

case with K = 10−4 has been also considered (Figure 5, bottom) and shows that most

of the dynamics takes place on periodic orbits. It is remarkable that Darwin’s form for

the dissipation provides results definitely similar to those obtained with the MacDonald

friction (compare with Figure 6 and Figure 5, bottom).

4.3 Occurrences of resonances

The number of occurrences of p : q resonances is strongly related to the main

parameters which mostly influence the dynamics, i.e. the eccentricity and the dissipative

parameter. Let us fix the perturbing parameter to ε = 0.1; Figure 7 shows the number of
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occurrences of the 1:1, 3:2, 2:1 resonances as the eccentricity varies in the interval [0, 0.4],

while the dissipative parameter takes the values K = 0, 10−4, 10−3, 10−2. We considered

the orbits with initial conditions x = 0 and y varying over a sample of 1 000 equally

spaced points in the interval [0.5, 2.5]. We interpret such results as follows. In general we

obtain that the number of occurrences of each resonance increases as the dissipation gets

stronger. Moreover, the resonances behave differently as the eccentricity is varied: the 1:1

resonance occurs less frequently as the eccentricity gets larger; an optimal value of the

eccentricity is observed in the remaining cases: for example, concerning the 3:2 resonance,

the number of occurrences is bigger at e = 0.05 for K = 0, while for K = 10−2 it is

larger at e = 0.2, thus showing a strong dependence of the non–synchronous resonances

upon the orbital eccentricity.

5 Conclusions

A major question in the context of the spin–orbit interaction concerns the different

behaviors of the Moon and of Mercury, and in particular the investigation of the proba-

bility of capture in the 1:1 or 3:2 resonances. We introduced a conservative model under

quite general assumptions, and then we discussed the contribution of dissipative torques

as provided by the standard MacDonald’s and Darwin’s formulations. The investigation

of the dynamics has been performed through different techniques, like the frequency anal-

ysis and the computation of the maximum Lyapunov indicator. The results show that

the occurrence of a specific resonance depends on several factors. First, the value of the

orbital eccentricity: for small eccentricities the synchronous resonance prevails, while the

3:2 resonance is most likely to occur for higher eccentricities. Secondly, a dominant role

is played by the dissipation factor, since the occurrence of resonances highly increases
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as the dissipation gets stronger. A comparative analysis of the different techniques (i.e.,

frequency analysis and Lyapunov indicators) clearly indicates that the relatively high

eccentricity of Mercury might be responsible for its capture into a 3:2 resonance; on the

other hand the lower eccentricity of the Moon might have leaded our satellite to select

the synchronous resonance.

A Integration algorithms

The integration of the conservative problem can be naturally performed through

some symplectic algorithms, like the modified Euler’s method adopted throughout the

text or a more accurate technique, like the fourth order symplectic integration developed

in [19], [20] to which we refer as Yoshida’s method. Nevertheless the choice of the inte-

gration algorithm for dissipative systems is not equally obvious. To this end we compare

three different techniques: beside the Euler and Yoshida symplectic methods we consider

also a 4th–order Runge–Kutta algorithm. In order to compare these methods we perform

some numerical integrations by varying the parameters and the initial conditions, while

the step–size is kept fixed for all methods (actually equal to 0.01). In all cases we consid-

ered we always found a good agreement among the three methods; this result led us to

perform our integrations through the easier and faster technique, namely the modified

Euler’s method.

To give concrete examples we propose two sets of parameters and data, the first one

leading to capture into the synchronous resonance (for ε = 10−2, K = 10−4, x0 = 0,

y0 = 0.8) and the second one not yet trapped by a resonance (ε = 10−2, K = 10−6,

x0 = 0, y0 = 0.5). In both cases the comparison is provided by Figure A.1 which shows

a very good agreement among the three algorithms, thus encouraging us to use the

14



modified Euler’s method (eventually adopting an adequate time–step), since it provides

a fast and sufficiently accurate integration of the equations of motion.
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Fig. 1. Frequency analysis showing ω versus ε in the conservative case. a) Moon (e = 0.0549)

with initial datum y = 1, x = 0. b) Moon (e = 0.0549) with initial datum y = 1.5, x = 0. c)

Mercury (e = 0.2056) with initial datum y = 1, x = 0. d) Mercury (e = 0.2056) with initial

datum y = 1.5, x = 0.
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Fig. 2. Charts showing the maximum Lyapunov indicator in the y-x plane for ε = 0.1. Top

left: Moon, K = 0; top right: Mercury, K = 0; bottom left: Moon, K = 10−4; bottom right:

Mercury, K = 10−4.
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Fig. 3. Poincaré maps at times multiples of 2π in the y-x plane for ε = 0.1. Top left: Moon,

K = 0; top right: Mercury, K = 0.

Fig. 4. Charts of the maximum Lyapunov indicator in the y-x plane for ε = 0.1, K = 0. Left:

e = 0.3; right: e = 0.4.

19



Fig. 5. Charts of the maximum Lyapunov indicator in the y–ε plane for x = 0. Top left: Moon

for K = 0; top right: Mercury for K = 0; bottom left: Moon for K = 10−4; bottom right:

Mercury for K = 10−4.
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Fig. 6. Charts of the maximum Lyapunov indicator in the y–ε plane for x = 0, K = 10−4;

Darwin’s form of the dissipation has been considered. Left: Moon; right: Mercury.
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Fig. 7. Number of occurrences in a p : q resonance versus the eccentricity, for different values of

the dissipative parameter: + stands for K = 0, × stands for K = 10−4, ∗ for K = 10−3, while

the square stands for K = 10−2. Top left: 1:1 resonance; top right: 3:2 resonance; bottom: 2:1

resonance.
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Fig. A.1. A comparison among a symplectic Euler’s method (first column), Yoshida’s

fourth–order algorithm (second column) and a fourth–order Runge–Kutta integration (third

column). In the first row the data are ε = 10−2, K = 10−4, x0 = 0, y0 = 0.8; in the second row

the data are ε = 10−2, K = 10−6, x0 = 0, y0 = 0.5.
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