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Abstract. We describe an efficient algorithm to compute all the critical points of
the distance function between two Keplerian orbits (either bounded or unbounded)
with a common focus. The critical values of this function are important for different
purposes, for example to evaluate the risk of collisions of asteroids or comets with
the Solar system planets. Our algorithm is based on the algebraic elimination theory:
through the computation of the resultant of two bivariate polynomials, we find a
16th degree univariate polynomial whose real roots give us one component of the
critical points. We discuss also some degenerate cases and show several examples,
involving the orbits of the known asteroids and comets.
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(Apollonius of Perga, Conics, Book I)

1. Introduction

The mutual position of two osculating Keplerian orbits with a common
focus can give us interesting information on the possibility of collisions
or close approaches between two celestial bodies that follow approx-
imately these trajectories. As it is well known these orbits, solutions
to the Kepler problem, are conics, either bounded (circles, ellipses) or
unbounded (parabolas, hyperbolas).

Given two Keplerian orbits, it is particularly interesting to determine
the Minimal Orbital Intersection Distance (MOID), that is the absolute
minimum of the Euclidean distance d between a point on the first orbit
and a point on the second one. Indeed the square of this distance d2

is always used, to have a smooth function of the angular variables on
the orbits also when the MOID is zero. In this way we can compute
the MOID by searching for all the critical points (or stationary points)
of the squared distance d2 and then selecting the minimum among

1 I observed you were quite eager to be kept informed of the work I was doing in
conics.
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2 G.F. Gronchi

the values at those points, that are finitely many for orbits in generic
position.

There are several papers available in the literature that deal with
the computation of the MOID; see for example (Sitarski, 1968), (Hoots,
1984), (Dybczynski et al., 1986). The main difficulty in the algorithms
proposed by these authors is to deal with a nonlinear one-dimensional
equation appearing when we solve for a component of the critical points
of d2.

Recently, for the case of two elliptic orbits, the equations of the
critical points of d2 have been interpreted as a polynomial system and
some algebraic geometry methods have been exploited to compute all
of its solutions. In (Kholshevnikov and Vassiliev, 1999) Gröbner bases
theory has been used to obtain a trigonometric polynomial whose real
roots represent one component of all the solutions. In (Gronchi, 2002)
an algorithm is introduced, based on the resultant theory (Cox et al.,
1992) and the Fast Fourier Transform (FFT) to perform the elimination
of one variable; an upper bound on the maximum number of critical
points (if they are finitely many) is also obtained by using Newton’s
polytopes and Bernstein’s theorem (Bernstein, 1975).

The use of algebraic elimination methods, that generalize Gauss’
elimination procedure from linear to nonlinear polynomial equations,
turns out to be a powerful tool to deal with this problem, avoiding
for example all the troubles that may arise when searching for a good
starting guess of Newton’s method.

In (Gronchi, 2002) we also stress the importance of computing all
the stationary points of d2: in fact there are cases, with orbits of NEAs
and of the Earth, for which a low value of the distance d can be attained
also at different local minima, and even at saddle points.

The use of the eccentric anomaly, as in both (Kholshevnikov and
Vassiliev, 1999) and (Gronchi, 2002), simplifies the formulas, but intro-
duces for e = 1 an artificial singularity; this can be avoided by using
the true anomalies, as is done in (Sitarski, 1968), where the algorithm
was conceived just to compute the MOID of the comets with respect
to the outer planets orbits.

In this paper, by using the true anomalies as orbital parameters, we
generalize the method presented in (Gronchi, 2002) to all the Keple-
rian orbits (including parabolas and hyperbolas). Furthermore we add
several improvements to our previous work, which are also important
from the computational point of view:

1. the mutual variables, useful to understand the effective dimension-
ality of the problem, are singular for vanishing mutual inclination,
therefore in this paper we use the two complete sets of orbital
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Critical points of the Keplerian distance 3

elements. However, when we perform large scale numerical experi-
ments, we can use the mutual variables to produce different orbital
configurations in terms of the Keplerian elements (see Section 8);

2. by an appropriate manipulation of the Sylvester matrix (see Sub-
sections 4.2, 10.2) we are able to factorize the resultant polynomial
and to obtain a 16th degree univariate polynomial, whose real roots
represent one component of the critical points;

3. due to the lower degree of the univariate polynomial, we easily
succeed in applying the FFT methods (that optimally work with
a number of evaluations that is a power of 2) using only 16 = 24

polynomial evaluations instead of 32 = 25, as in our previous work.

We observe that in (Kholshevnikov and Vassiliev, 1999) an 8th degree
trigonometric polynomial g(u) (function of sinu, cos u) is computed,
that plays the same role of our 16th degree polynomial, anyway their
method requires a symbolic manipulation program to perform the elim-
ination. In this paper we shall make a self contained computation of
this 16th degree polynomial; furthermore, as it will be obtained as the
determinant of a matrix, we shall directly work on the coefficients of
this matrix, that are polynomials of lower degree.

In Sections 2, 3 and 4 we introduce the problem, its algebraic for-
mulation and our algorithm to solve it. In Section 5 we present a useful
improvement to the algorithm: we use an angular shift along the elliptic
orbits to control the size of the roots of the polynomial equations that
we are solving and to avoid sending roots to infinity. In Sections 6,
7 we shall study some properties of the critical points: in particular
we shall estimate the size of their corresponding anomalies in the case
of parabolic and hyperbolic orbits, and we shall characterize the cases
with infinitely many critical points. In Section 8 we shall present some
examples with a high number of critical points and some applications
to Solar system orbits.

2. Critical points of the squared distance

Let us consider two Keplerian orbits with a common focus. We shall use
the cometary elements (Q,E, i1,Ω1, ω1, V ) and (q, e, i2,Ω2, ω2, v) to de-
scribe these orbits, that are respectively perihelion distance, eccentric-

ity, inclination, longitude of perihelion, perihelion argument and true

anomaly. The orbits, on their respective planes, can be parametrized
as follows

{

X = R cos V
Y = R sinV

{

x = r cos v
y = r sin v
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4 G.F. Gronchi

where

R =
P

1 + E cos V
; r =

p

1 + e cos v
;

and P = Q(1 + E), p = q(1 + e) are the conic parameters.
Following (Sitarski, 1968) we can write the components of the orbits

X1 = (X1 , Y1 , Z1) ,X2 = (x2 , y2 , z2) as

X1 = X P + Y Q = R [P cos V + Q sin V ] ;

X2 = x p + y q = r [p cos v + q sin v] ;

with
P = (Px , Py , Pz) ; Q = (Qx , Qy , Qz) ;
p = (px , py , pz) ; q = (qx , qy , qz) ;

where 2

Px = cos ω1 ; Py = sinω1 cos i1 ; Pz = sinω1 sin i1 ;

Qx = − sinω1 ; Qy = cos ω1 cos i1 ; Qz = cos ω1 sin i1 ;

px = cos ω2 cos(Ω2 − Ω1) − sinω2 cos i2 sin(Ω2 − Ω1) ;

py = cos ω2 sin(Ω2 − Ω1) + sinω2 cos i2 cos(Ω2 − Ω1) ;

pz = sinω2 sin i2 ;

qx = − sinω2 cos(Ω2 − Ω1) − cos ω2 cos i2 sin(Ω2 − Ω1) ;

qy = − sinω2 sin(Ω2 − Ω1) + cosω2 cos i2 cos(Ω2 − Ω1) ;

qz = cos ω2 sin i2 .

Remark: The following relations hold:

‖P‖ = ‖Q‖ = ‖p‖ = ‖q‖ = 1 ; 〈P,Q〉 = 〈p, q〉 = 0 ;

where 〈, 〉 is the Euclidean scalar product.

2 The quantities Px, Py, Pz, Qx, Qy, Qz, px, py, pz, qx, qy, qz are the elements in the
first two rows of the matrices

H1 =

[

1 0 0
0 cos i1 − sin i1
0 sin i1 cos i1

][

cos ω1 − sin ω1 0
sin ω1 cos ω1 0

0 0 1

]

and

H2 =

[

cos(Ω2 − Ω1) − sin(Ω2 − Ω1) 0
sin(Ω2 − Ω1) cos(Ω2 − Ω1) 0

0 0 1

][

1 0 0
0 cos i2 − sin i2
0 sin i2 cos i2

][

cos ω2 − sin ω2 0
sin ω2 cos ω2 0

0 0 1

]

that are used to place the orbits in the 3-dimensional space. In (Sitarski, 1968) the
same quantities are described as components of cracovians, that are ordinary matri-
ces with a different multiplication rule. The cracovian calculus has been introduced
by the Polish mathematician T. Banachiewicz; see (Banachiewicz, 1955).
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Critical points of the Keplerian distance 5

The squared distance d2 between two points on the two orbits is
given by

d2(V, v) = 〈X1 −X2,X1 −X2〉 (1)

and we can write the equations for the stationary points of d2 as



















R

P
[ERY + Y (Kx + My) − (ER + X)(Lx + Ny)] = 0

r

p
[ery + y(KX + LY ) − (er + x)(MX + NY )] = 0

(2)

where

K = 〈P, p〉 ; L = 〈Q, p〉 ; M = 〈P, q〉 ; N = 〈Q, q〉 .

We rewrite system (2) by collecting its terms as follows:







































p [1 + E cos V ]
{

sinV [K cos v + M sin v]−
− [E + cos V ] [L cos v + N sin v]

}

+ EP sinV [1 + e cos v] = 0 ;

P [1 + e cos v]
{

sin v [K cos V + L sinV ]−
− [e + cos v] [M cos V + N sinV ]

}

+ ep sin v[1 + E cos V ] = 0 .

(3)

Remark: We search for the real solutions of system (3). If E ≥ 1
(resp. e ≥ 1) we take only the solutions for which 1 + E cos V > 0
(resp. 1 + e cos v > 0).

Remark: The values of the pairs (V, v) such that 1 + E cos V = 1 +
e cos v = 0 are always solutions of system (3): they are not real solutions
if E < 1 or e < 1; otherwise they are real, but they have to be
discarded because their components coincide with the angular value
of the asymptote of the corresponding hyperbola, or with the value −π
if the orbit is parabolic.

3. Algebraic formulation of the problem

Following (Gronchi, 2002) we use the variable change

{

s = tan(V/2)
t = tan(v/2)

(4)
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6 G.F. Gronchi

to transform the problem into an algebraic one. Taking into account
the relations

1 + E cosV =
(E + 1) − s2(E − 1)

1 + s2
; E + cosV =

(E + 1) + s2(E − 1)

1 + s2
;

1 + e cos v =
(e + 1) − t2(e − 1)

1 + t2
; e + cos v =

(e + 1) + t2(e − 1)

1 + t2
;

we have to solve the polynomial system
{

f(s, t) = f4(t) s4 + f3(t) s3 + f2(t) s2 + f1(t) s + f0(t) = 0
g(s, t) = g2(t) s2 + g1(t) s + g0(t) = 0

(5)

with

f0(t) = p(E + 1)2(Lt2 − 2Nt − L) ;

f1(t) = −2 [Kp(E + 1) + EP (e − 1)] t2 + 4pM(E + 1) t +

+2 [Kp(E + 1) + EP (e + 1)] ;

f2(t) = 0 ;

f3(t) = 2 [Kp(E − 1) − EP (e − 1)] t2 − 4pM(E − 1) t −
−2 [Kp(E − 1) − EP (e + 1)] ;

f4(t) = −p(E − 1)2(Lt2 − 2Nt − L) = − (E − 1)2

(E + 1)2
f0(t) ;

and

g0(t) = PM(e − 1)2 t4 + [−2KP (e − 1) + 2ep(E + 1)] t3 +

+ [2KP (e + 1) + 2ep(E + 1)] t − PM(e + 1)2 ;

g1(t) = 2PN(e − 1)2 t4 − 4PL(e − 1)t3 + 4PL(e + 1) t − 2PN(e + 1)2 ;

g2(t) = −PM(e − 1)2 t4 + [2KP (e − 1) − 2ep(E − 1)] t3 +

+ [−2KP (e + 1) − 2ep(E − 1)] t + PM(e + 1)2 .

Remark: The variable change (4) does not allow to take into account
the values V = π and v = π, that are sent to infinity: we have to take
care of this fact when we deal with elliptic or circular orbits. A solution
to this problem is the subject of Section 5.

4. Description of the algorithm

We shall follow the key steps described in (Gronchi, 2002) to compute
the solutions of the polynomial system (5); however we shall present
some important improvements to that technique, allowing to reduce
the computing time. These steps are
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Critical points of the Keplerian distance 7

1. use the resultant theory to eliminate one variable;

2. compute the coefficients of the resultant polynomial (or of one fac-
tor of its) using an evaluation–interpolation method by the Fast
Fourier Transform applied to the coefficients of the matrix defining
the resultant (or defining its factor).

In the following we shall describe the algorithm in details.

4.1. Elimination of the variable s

From the algebraic theory of elimination (Cox et al., 1992) we know
that f(s, t) and g(s, t) have a common factor (as polynomials in the
variable s) if and only if the resultant Res(t) = Res(f(s, t), g(s, t), s) of
f and g with respect to s is zero.

The resultant is given by the determinant of the Sylvester matrix

S(t) =



















f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
0 f3 g0 g1 g2 0
f1 0 0 g0 g1 g2

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0



















,

that is

Res(t) = −g0g
3
1f1f4 + 3 g2

0g1g2f1f4 + g0g
2
1g2f1f3 − g3

1g2f0f3 −
−g1g

3
2f0f1 + 3 g0g1g

2
2f0f3 − g3

0g1f3f4 − 4 g0g
2
1g2f0f4 + 2 g2

0g2
2f0f4 +

+g4
2f

2
0 + g4

0f
2
4 + g4

1f0f4 + g3
0g2f

2
3 − 2 g2

0g2
2f1f3 + g0g

3
2f

2
1 ;

and it is generically a 20-th degree polynomial in the variable t.

4.2. Factorization of the resultant

In a previous remark we have already observed that we know four
solutions of (3) and then of (5): we want to use the basic properties of
the determinants to extract a factor of degree 4 from the resultant.

Let αE = E−1
E+1 . We note that

g1(t) =
[

t2(e − 1) − (e + 1)
]

g̃1(t) (6)

g2(t) + αE g0(t) =
[

t2(e − 1) − (e + 1)
]

g̃20(t) (7)

f3(t) + αE f1(t) =
[

t2(e − 1) − (e + 1)
]

f̃31(t) (8)
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8 G.F. Gronchi

where

g̃1(t) = 2P
[

N(e − 1)t2 − 2Lt + N(e + 1)
]

;

g̃20(t) = P (αE − 1)
[

M(e − 1) t2 − 2K t + M(e + 1)
]

;

f̃31(t) = −2EP (1 + αE) .

The resultant is equal to the determinant of the matrix

S̃(t) =

















f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
0 f3 + αEf1 g0 + g2/αE g1 g2 + αEg0 αEg1

f1 + f3/αE 0 g1/αE g0 + g2/αE g1 g2 + αEg0

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0

















obtained performing the following operations on the rows of S(t):

1. add to the 3rd row 1/αE times the 1st row and αE times the 5th
row;

2. add to the 4th row 1/αE times the 2nd row and αE times the 6th
row .

Using relations (6),(7),(8) and the basic properties of determinants
we can write

Res(t) = det(S̃(t)) =
[

t2(e − 1) − (e + 1)
]2

det(Ŝ(t)) ,

with

Ŝ(t) =



















f4 0 g2 0 0 0
f3 f4 g1 g2 0 0

0 f̃31 g̃20/αE g̃1 g̃20 αE g̃1

f̃31/αE 0 g̃1/αE g̃20/αE g̃1 g̃20

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0



















;

As the resultant Res(t) is divisible by the factor
[

t2(e − 1) − (e + 1)
]2

we can take into account the 16th degree polynomial defined by

r(t) = det(Ŝ(t)) =
Res(t)

[t2(e − 1) − (e + 1)]2
.

Remark: The factor t2(e − 1) − (e + 1) (for e 6= 1) has the roots

t = ±
√

e+1
e−1 : these are purely imaginary if e < 1, while if e > 1 they

correspond to the angular values of the asymptotes of the hyperbolic
orbit. In any case these roots of the resultant have to be discarded. The
term t2(e − 1) − (e + 1) corresponds to 1 + e cos(v) in (3).
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Critical points of the Keplerian distance 9

Remark: The matrix Ŝ(t) is not defined for αE = 0, and this sin-
gularity is not present in the original Sylvester matrix S(t). This can
be explained as a wrong choice of the coordinate change in (4) that
prevents us to find solutions at infinity and can be removed using the
formulas described in Section 5.

Remark: Applying (4) to system (3) with E = 1, the first equation
in (5) has a smaller degree as a function of s than in the general case
(see Appendix, Subsection 10.3): for this reason the determinant of
the matrix S(t) becomes a multiple of the resultant Res(t) of the two
polynomials of the system with respect to s, in fact the Sylvester matrix
of the system has in this case a smaller size (it is a 5 × 5 matrix). On
the other hand if e = 1 the second equation in (5) has a smaller degree
as a function of t, but the degree of the polynomials in the variable
s is not smaller, so that the resultant Res(t) can be computed as the
determinant of S(t).

4.3. Computation of the coefficients of r(t)

We use the Fast Fourier Transform (FFT) to compute the coefficients
of the polynomial r(t) = det(Ŝ(t)). The algorithms for the Discrete
Fourier Transform (DFT) and the Inverse Discrete Fourier Transform
(IDFT), that are respectively the FFT methods to perform evalua-
tion and interpolation, are particularly efficient when working with a
number of evaluations that is a power of 2. Unfortunately r(t) has 17
coefficients (= 24 + 1).

We use the following strategy to work with a lower degree polynomial
and use only 24 evaluations: we observe that we can write

r(t) = r0 + t r̃(t) (9)

where

r̃(t) =
15
∑

j=0

rj+1 tj and r0 = det(Ŝ(0)) .

We apply the evaluation–interpolation method to the 15th degree poly-
nomial r̃(t) (with 24 coefficients) whose evaluations in the 16th roots of
unity are given by

r̃(e−2πi k
16 ) =

r(e−2πi k
16 ) − r0

e−2πi k
16

, k = 0 . . . 15 . (10)

Thus we compute the coefficients of r by interpolating the values of r̃.
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10 G.F. Gronchi

4.4. Steps of the algorithm

In this paragraph we explain the main steps of our method.

1. evaluate the polynomials f0, f1, f3, g0, g1, g2, g̃1, g̃20
3 in Ŝ(t) at t = 0

and at all the 16th roots of unity

ωk = e−2πi k
16 k = 0, .., 15

by the DFT algorithm ;

2. compute the determinant of the 16 matrixes Ŝ(ωk), with k = 0 . . . 15;
each of them is evaluated at a different point of the complex plane.
If a square matrix has its coefficients depending on a variable t, then
the evaluation at a point t of the determinant of this matrix is equal
to the determinant of the matrix whose coefficients are evaluated
at t. Thus we obtain the evaluation of r(ωk), for k = 0 . . . 15 ;

3. use (10) to compute r̃(ωk) for k = 0 . . . 15 ;

4. apply the IDFT algorithm to obtain the coefficients of r̃(t) from its
16 evaluations ;

5. compute the coefficients of r(t) using relation (9) ;

6. compute the real roots of r(t). For this point we use the algorithm
described in (Bini, 1997), based on simultaneous iterations ;

7. given a solution t ∈ R of r(t) = 0, search for one or more values
s ∈ R for which (t, s) is a solution of (5) ; 4

8. detect the type of singularity, i.e. classify the critical points in
minimum, maximum or saddle points.

Note that even if the polynomial r(t) can be written in a short
form, its coefficients hide very long expressions, functions of the orbital
elements. An advantage of the resultant method is that it allows to
evaluate directly the coefficients of the matrix Ŝ, that are lower degree
polynomials and have shorter expressions.

3 Note that f̃31 is constant.
4 This step is quite delicate, we have to deal with the following cases:

(i) for a real root t there are more than one real value s such that the pair (t, s)
satisfies (5), indeed up to four values (see (Gronchi, 2002) for an example);

(ii) for a real root t there is a value s ∈ C \ R, see Appendix, Subsection 10.4 for
a simple example with low degree polynomials.
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Critical points of the Keplerian distance 11

5. Shifts along the bounded orbits

In the case of bounded orbits (circles/ellipses) the variable change (4)
does not allow to find the angular value π for V or v. If we know that
V ∗ + π and v∗ + π are not components of a critical point we can send
one or both these values to infinity by composing (4) with an angular
shift. We introduce the general variable change

{

Ξ = V − α
ξ = v − β

where Ξ, ξ are the new angular variables and α, β are constant angles.
By the usual trigonometric addition formulas applied to equation

(1) we define the squared distance in terms of the unknowns (Ξ, ξ):

δ2(Ξ, ξ) = 〈X1 −X2,X1 −X2〉

where

X1 = R [A cosΞ + B sinΞ] ; X2 = r [a cos ξ + b sin ξ] ;

and

A = P cos α + Q sinα ; B = −P sinα + Q cos α ;
a = p cos β + q sinβ ; b = −p sinβ + q cos β ;

with components defined by

A = (Ax , Ay , Az) ; B = (Bx , By , Bz) ;
a = (ax , ay , az) ; b = (bx , by , bz) .

The system defining the critical points is

∇Ξ,ξδ
2(Ξ, ξ) = 0 , (11)

and the components of the gradient are

∂δ2

∂Ξ
= 2〈X1−X2,

∂

∂Ξ
(X1−X2)〉 ;

∂δ2

∂ξ
= 2〈X1−X2,

∂

∂ξ
(X1−X2)〉 ;

where

∂

∂Ξ
(X1 −X2) =

P

(1 + E cos V )2
[B cos Ξ −A sinΞ + QE] ;

∂

∂ξ
(X1 −X2) =

p

(1 + E cos v)2
[b cos ξ − a sin ξ + q e] .

Remark: The following relations hold:

‖A‖ = ‖B‖ = ‖a‖ = ‖b‖ = 1 ; 〈A,B〉 = 〈a, b〉 = 0 ;
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12 G.F. Gronchi

A|α=0 = P ; B|α=0 = Q ; a|β=0 = p ; b|β=0 = q .

From (11) we obtain






















p [1 + E cos(Ξ + α)] 〈P sin(Ξ + α) −Q [E + cos(Ξ + α)] , a cos ξ + b sin ξ〉+
+EP sin(Ξ + α) [1 + e cos(ξ + β)] = 0 ;

P [1 + e cos(ξ + β)] 〈p sin(ξ + β) − q [e + cos(ξ + β)] ,A cos Ξ + B sinΞ〉+
+ep sin(ξ + β) [1 + E cos(Ξ + α)] = 0 .

(12)
Remark: The values of the pairs (Ξ, ξ) such that 1 + E cos(Ξ + α) =
1 + e cos(ξ + β) = 0 are always solutions of system (12). Their explicit
values are

Ξ = ±(arccos(−1/E) − α) ; ξ = ±(arccos(−1/e) − β) .

Using the variable change
{

z = tan(Ξ/2)
w = tan(ξ/2)

(13)

we can transform system (12) into a polynomial system in the variables
z, w and we can generalize the procedure described in Sections 3, 4 to
find its solutions, see Subsections 10.1, 10.2 in the Appendix for the
details.

6. Size of the solutions along the unbounded orbits

As we have seen in the previous sections, there are natural bounds to
the true anomalies V, v of the critical points of d2:

1 + E cos V > 0 ; 1 + e cos v > 0 .

If we consider two unbounded orbits then it is not possible to set
additional bounds to the components of the critical points: think about
the example of two overlapping hyperbolic orbits.

On the other hand, if the unbounded orbit is only one, we can set
a more restrictive bound on the component of the critical points along
this orbit.

It is useful to remind a geometric interpretation of the stationary
points of the squared distance d2 between two any smooth curves
γ1(V ), γ2(v) in R

3:

Lemma 1. If (V , v) is a critical point of d2, and P1 = γ1(V ), P2 = γ2(v)
are the Cartesian coordinates in R

3 that correspond to it on the two

curves, then the straight line joining P1 and P2 is orthogonal to both

the tangent lines to γ1 and γ2 in P1, P2 (see Figure 1).
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P

P’

γ

γ

1

2

Figure 1 The geometry of the stationarity condition for the distance function be-
tween two curves: the line joining the Cartesian coordinates of the critical points
must be orthogonal to both tangent vectors.

Proof. We have d2(V, v) = 〈γ1(V ) − γ2(v), γ1(V ) − γ2(v)〉, so that

∂d2

∂V
(V , v) = 2

〈

dγ1

dV
(V ), P1 − P2

〉

= 0

∂d2

∂v
(V , v) = 2

〈

dγ2

dv
(v), P1 − P2

〉

= 0

Let us consider the case of a planet and a non-periodic comet. The
parametric equation of the orbit of the comet γ2 in terms of the true
anomaly v, in a reference frame with the x axis pointing towards the
pericenter of γ2 and the y axis lying on the plane of this orbit, is given
by

γ2 ≡
(

p cos v

1 + e cos v
,

p sin v

1 + e cos v
, 0

)

where p = a(1 − e2) is the conic parameter. For each point P ∈ γ2,
corresponding to a value v, we write the tangent vector τ(P ) to γ2 in
P as

τ(P ) =
1√

1 + 2e cos v + e2
(− sin v, cos v + e, 0) .

The plane π orthogonal to τ(P ) and passing through P is given by

− sin v x + (cos v + e) y − F (v) = 0 ,

where

F (v) =
p e sin v

1 + e cos v
.

The squared distance from π to the origin O is the minimum of the
function

δ2(x) = x2

[

1 +
sin2 v

(cos v + e)2

]

+ 2
x sin v F (v)

(cos v + e)2
+

F 2(v)

(cos v + e)2
,
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Figure 2 Geometrical sketch of the estimate (14), that gives a bound for the param-
eter of a critical point along the comet orbit (parabolic or hyperbolic). The point
P ∗ corresponds to the tangency of the plane π to the sphere with radius Ra, the
apocenter distance of the orbit of the planet.

that is attained in

x∗ = − sin v F (v)

1 + 2 e cos v + e2
.

We obtain

δ2(x∗) =
F 2(v)

1 + 2 e cos v + e2
=

p2 e2 sin2 v

(1 + e cos v)2 (1 + 2 e cos v + e2)
.

Let Ra be the apocenter distance of the planet orbit γ1 and let us
set ξ = cos v, that implies ξ ∈] − 1/e, 1]. Thus Lemma (1) implies that
the ξ component of a critical point has to fulfill the relation

R2
a(1 + eξ)2 (1 + 2 e ξ + e2) ≥ e2p2(1 − ξ2) . (14)

Remark: For ξ = 1 relation (14) trivially holds. We can then assume

in the following that ξ ∈] − 1/e, 1[.

Let us define the functions

h(ξ) =
R2

a(1 + eξ)2

1 − ξ2
; k(ξ) =

p2e2

1 + 2eξ + e2
;

then relation (14) on the interval ] − 1/e, 1[ can be written as h(ξ) ≥
k(ξ).

A simple computation of the derivatives of h, k shows that h(ξ)
is strictly increasing in the interval considered, and k(ξ) is strictly
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Critical points of the Keplerian distance 15

decreasing; furthermore

h(−1/e) = 0 ; lim
ξ→−1/e+

k(ξ) =







p2e2

e2 − 1
> 0 if e > 1

+∞ if e = 1
;

h(0) = R2
a ; k(0) =

p2e2

1 + e2
;

lim
ξ→1−

h(ξ) = +∞ ; k(1) =
p2e2

(1 + e)2
.

From these considerations, using the monotonicity properties of h, k
we know that there is always only one point ξ∗ ∈] − 1/e, 1[ such that
h(ξ∗) = k(ξ∗); furthermore condition (14) gives ξ ≥ ξ∗, that is

−arccos(ξ∗) ≤ v ≤ arccos(ξ∗). (15)

Then the maximum value of the distance from the focus rmax for the
Cartesian components of a critical point along the orbit of the comet
is given by

rmax =
p

1 + eξ∗
.

The point ξ∗ is one of the roots of the third degree equation

R2
a (1 + 2eξ + e2)(1 + eξ)2 = p2e2 (1 − ξ2) .

Using the monotonicity properties of h, k we can give a bound to the
size of ξ∗: we observe that

1. if h(0) < k(0) then 0 < ξ∗ < ξmax ;

2. if h(0) > k(0) then ξmin < ξ∗ < 0 ;

where ξmax is the positive solution of the second degree equation given
by h(ξ) = k(0), while ξmin is the solution of k(ξ) = h(0), so that
|ξ∗| ≤ max{|ξmin|, ξmax}.
Remark: The estimate (15) is optimal, in fact it can be attained if
the apocenter of the bounded orbit corresponds to the point marked
with P ∗ in Figure (2). It is even possible for the distance to vanish for
v = v∗ = ±arccos(ξ∗) if the apocenter of the planet orbit γ1(π) and
γ2(v

∗) coincide with P ∗.

Remark: If e = 1 relation (14) becomes

2R2
a(1 + ξ)2 ≥ p2(1 − ξ) ,

and we obtain a simple expression for ξ∗:

ξ∗ =
1

4R2
a

[

−(p2 + 4R2
a) + p

√

p2 + 16R2
a

]

.
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16 G.F. Gronchi

Remark: If the apocenter distance Ra is ≤ pe/
√

1 + e2, then ξ∗ ≥ 0,
v ∈ [−π/2, π/2] and rmax = p.

7. Infinitely many critical points

In the case of two concentric coplanar circles or two overlapping conics
we have trivially an infinite number of critical points of d2. We shall
show that these cases are the only with this property.

Proposition 1. Let us consider two Keplerian orbits with a common

focus. If there are infinitely many critical points of the squared dis-

tance function d2 between these orbits, then either the two orbits are

concentric coplanar circles or they are two overlapping conics.

Proof. If there are infinitely many real solutions of system (24) 5, then
the two polynomials have a common factor hα,β(z, w) (with total degree
less or equal to 4) with a continuum of real roots, that correspond to
critical points of d2.

The singular points of the polynomial hα,β(z, w) are isolated, hence
there exists an open set in the plane (z, w) containing regular points of
hα,β, such that hα,β(z, w) = 0. Then we can define a regular parametric
curve Γ :] − 1, 1[→ R

2, with parameter σ, such that Γ(σ) is a critical
point of d2 for each σ ∈] − 1, 1[.

The value of d2 along the curve Γ is a constant ρ: this can be easily
checked by computing the derivative of d2(Γ(σ)) with the chain rule.

Let us take into account the first orbit γ1 and draw the smooth
surface Σ composed by the union of the circles with radius ρ centered
in the points of γ1 and orthogonal to γ1 at these points. Consider now
a plane passing through a focus of γ1 (the common focus) and not
coinciding with the first orbit plane: we shall show that no section cut
by this plane on the surface Σ can be an arc of conic, not even locally.

We begin with the simplest case: γ1 is a circular orbit with radius R.
Assuming that γ1 is on the plane (X1, X2), then the surface Σ (which
is the ordinary torus) has parametric equations







X1 = cos V (R + ρ cos φ)
X2 = sinV (R + ρ cos φ)
X3 = ρ sinφ

with parameters V, φ.

5 We are considering the general polynomial formulation with the angular shifts
given in the Appendix.
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Critical points of the Keplerian distance 17

The plane π passing through the focus O, where the second orbit
lies, is defined by

AX1 + BX2 + CX3 = 0

for some constants A,B,C ∈ R. Assuming that this plane is not or-
thogonal to the z axis gives us the relation A2 + B2 > 0.

We select two vectors ê1, ê2 ∈ R
3 that generate a Cartesian reference

frame on the plane π. Choosing ê1 on the line where the two orbital
planes intersect we have

ê1 = (−B,A, 0) ; ê2 =
1√

1 + C2
(−CA,−CB, 1) ;

with A2 + B2 = 1.
Using Cartesian coordinates (ξ, η) on the plane π, we write the vector

equation
ξ ê1 + η ê2 = (X1, X2, X3)

or, more explicitely














































−ξ B − η
CA√
1 + C2

= cos V (R + ρ cos φ)

ξ A − η
CB√
1 + C2

= sinV (R + ρ cos φ)

η√
1 + C2

= ρ sinφ

(16)

that are three equations in the four unknowns ξ, η, V, φ.
We want to perform an elimination of variables and write only

one equation relating ξ and η. From the third equation in (16) we
immediately obtain 6

sinφ =
η

ρ
√

1 + C2
; cos2 φ =

1

ρ2

[

ρ2 − η2

1 + C2

]

; (17)

hence we can write sinφ, cos φ as functions of ξ, η. Squaring and sum-
ming the first two equations in (16) we have

ξ2 +
C2η2

1 + C2
= (R + ρ cos φ)2

and, by (17),

ξ2 + η2 − (R2 + ρ2) = ±2R

√

ρ2 − η2

1 + C2
. (18)

6 ρ > 0 otherwise the two orbital planes would coincide.
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18 G.F. Gronchi

The last equations can not represent an arc of a conic, not even locally,
as can be easily seen by using polar coordinates (r, θ) defined by ξ =
r cos(θ), η = r sin(θ). In fact if it were, from the general equation of a
conic in polar coordinates r = p/(1 + e cos(θ)), with eccentricity e and
conic parameter p, we would have

ξ =
p − r

e
; η2 =

e2r2 − (p − r)2

e2
; (19)

thus, substituting in (18), we would obtain the relation

r2 − C1 = ±C2

√

C3 − e2r2 + (p − r)2 (20)

for positive constants C1, C2, C3, that can not be true for each value of
r in an open interval. 7

Then we have to show that also the case of a circular arc (r =
constant) is excluded. From (18) with constant r = r0 we obtain

r2
0 − (R2 + ρ2) = ±2R

√

ρ2 − r2
0 sin2 θ

1 + C2
,

that can not hold for θ in an open interval.
We study the case of two coincident orbital planes by passing to the

limit for C → +∞. Then (18) becomes

r2 − (R2 + ρ2) = ±2Rρ ,

that gives the radius of two circular orbits, coplanar with γ1.

Now we shall consider the general case of a conic γ1 with equation
in polar coordinates (R, V )

R(V ) =
P

1 + E cos V
; P = Q(1 + E) ;

where P is the conic parameter, Q the pericenter distance and the
eccentricity E is assumed > 0.

The surface Σ is defined by






X1 = R(V ) cos V + ρ cos[α(V )] cos φ
X2 = R(V ) sinV + ρ sin[α(V )] cos φ
X3 = ρ sinφ

where






















cos[α(V )] =
cos V + E√

1 + 2E cos V + E2

sin[α(V )] =
sinV√

1 + 2E cos V + E2

7 By squaring both sides of (20) we obtain a polynomial in the variable r.
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Following the same steps of the previous case we obtain the system














































−ξ B − η
CA√
1 + C2

= R(V ) cos V + ρ cos[α(V )] cos φ

ξ A − η
CB√
1 + C2

= R(V ) sinV + ρ sin[α(V )] cos φ

η√
1 + C2

= ρ sinφ

(21)

and, by squaring and summing the three equations in (21), we obtain

ξ2 + η2 = R2(V ) + ρ2 +
2Pρ cos φ

1 + 2E cos V + E2
(22)

where cos φ is given in terms of η by formula (17).
Note that we have not eliminated the dependence on V . We can

compute cos V as a function of ξ, η using the first equation in (21).
We complete the proof by contradiction: no arc of conic can satisfy

equation (22), in fact if it were, using relations (19) we would obtain an
equation e(r) = 0 in the variable r that have at most a discrete number
of solutions. Actually, even if this equation is not as simple as (20),
we can write it by performing on some powers of r a finite number of
sums, multiplications by constant and root extractions. The left hand
side e(r) of such equation is an analytic function of r as a complex
variable, except for at most a countable number of points.

As a result we obtain only constant solutions for r and, if r is
constant, the second orbit must be circular. Then we can apply a
reciprocity argument starting from this circular orbit and using the
results previously shown to prove that also the first orbit should be
circular, and that is a contradiction.

Also in this case we can deal with coincident orbital planes by
passing to the limit for C → +∞. From (21) it follows that

ρ = 0 or sin(φ) = 0 .

If ρ ≡ 0 we have two coincident conics, otherwise sin(φ) = 0, so that
cos(φ) = ±1. We can exclude the last case again by contradiction: using
an argument similar to the previous one, we obtain an equation in the
variable r that can not be true for each value of r in an open interval.
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Figure 3 We draw some of the mutual elements for two orbits. Note the direction
of the orientation vectors N1,N2, that defines the mutual inclination iM and the
mutual ascending node.

8. Numerical experiments and applications to Solar system

orbits

8.1. Large scale experiments

To make a large number of numerical experiments with different orbital
configurations we can take advantage of a set of elements depending
only on the mutual position of the two orbits.

Given two Keplerian orbits with a common focus and nonzero mu-
tual inclination, we define the cometary mutual elements

EM = {Q,E, q, e, iM , ω
(1)
M , ω

(2)
M }

as follows: Q,E and q, e are the pericenter distance and the eccentricity

of the two orbits, iM is the mutual inclination between the two orbital

planes and ω
(1)
M , ω

(2)
M are the angles between the ascending mutual node

of the second orbit with respect to the first orbit and the pericenters
of the two orbits. 8

The map

Φ : (E1, E2) → EM

8 These elements are defined by assigning an orientation to both orbits, i.e. a
normal vector Ni (i = 1, 2) to each orbital plane. The mutual inclination is the
angle between N1 and N2, while the ascending mutual node corresponds to the pair
of points defined by the intersection of the two orbits with the mutual node line,
that lies on the same side with respect to the origin as the wedge product N1 ∧N2

of the two orientation vectors (see Figure 3).
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from the ordinary cometary elements to the mutual elements, is not

injective, actually there are infinitely many configurations that brings
to the same mutual position of the two orbits. 9 We define an inverse of
the map Φ by selecting a set of elements (E1, E2) in each counter-image
Φ−1 (EM ):

E1 = {Q,E, i1,Ω1, ω1} = {Q,E, 0, 0, ω
(1)
M } ,

E2 = {q, e, i2,Ω2, ω2} = {q, e, iM , 0, ω
(2)
M } .

(23)

Using the axial symmetry of conics we realize that the transforma-
tions

{

ω
(1)
M → π − ω

(1)
M

ω
(2)
M → π − ω

(2)
M

{

ω
(1)
M → π + ω

(1)
M

ω
(2)
M → π + ω

(2)
M

{

ω
(1)
M → 2π − ω

(1)
M

ω
(2)
M → 2π − ω

(2)
M

give rise to the same critical values of the distance. Therefore we only

need to take into account the values of iM , ω
(1)
M , ω

(2)
M in the following

ranges:

iM ∈]0, π[ ; ω
(1)
M ∈ [0, π/2[ ; ω

(2)
M ∈ [0, 2π[ .

Using mutual cometary elements and the map (23) we have been able
to perform a large number of numerical experiments with significantly
different orbital configurations, avoiding to compute the critical points
of d2 for configurations that give the same critical values. We have also
identified some cases with a high number of critical points.

In Figure 4 we show the level lines of the squared distance d2 for
an example with 10 critical points: note that one orbit is circular. The
values of the critical points, the corresponding values of d and the
type of singularity are displayed in Table I. This example could appear
artificial, but we can find similar cases even among the Near Earth
Asteroids: see for example the 10 critical points for the asteroid 2004
LG with respect to the Earth orbit on the NEODyS website.10

In Figure 5 we show the level lines of d2 for an example with 12
critical points, the maximal number of points that we have found within
these experiments: the values of the critical points, the corresponding
values of d and the type of singularity are displayed in Table II.

In Figures 6, 7 we present two cases with an elliptic and a hyperbolic
orbit: we obtain in both cases 6 critical points, that is the largest

9 e.g. we can rotate by the same angle both orbits around an axis passing through
the common focus without changing their mutual position.

10 The Near Earth Asteroids Dynamic Site at the University of Pisa: web address
http://newton.dm.unipi.it/neodys
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Figure 4 Level curves of the squared distance for an example with 10 critical points:
the local extrema are marked with a plus while saddle points are marked with a
cross.

Table I An example with 10 critical points: in the
table we write the corresponding values of the true
anomalies (in degrees), the values of the distance d

and the type of singularity: note that one of the two
conics is a circle (see Table III).

V v distance type

164.70127 5.40234 0.51940 MINIMUM

3.18796 -141.16197 0.75687 MINIMUM

-39.54070 142.93388 0.86458 MINIMUM

60.52617 -92.83135 0.90461 SADDLE

-20.41060 175.23045 0.92827 SADDLE

-85.28388 104.70790 0.93224 SADDLE

-60.11674 -58.72173 1.44587 SADDLE

18.44302 57.90583 1.47347 SADDLE

-10.06618 15.74301 1.48171 MAXIMUM

162.29077 -179.41542 2.91897 MAXIMUM
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Figure 5 Level curves of the squared distance for an example with 12 critical points.

Table II An example with 12 critical points.

V v distance type

120.68556 -9.33288 0.83357 MINIMUM

12.71196 -108.56712 0.86807 MINIMUM

59.69387 -70.40595 0.89802 SADDLE

-31.44700 107.56234 0.94700 MINIMUM

-127.41750 22.52194 0.95415 MINIMUM

-164.74517 10.89872 0.96957 SADDLE

-80.56016 65.78350 0.97555 SADDLE

29.32904 58.13570 1.03159 SADDLE

-54.54877 -27.88305 1.04803 SADDLE

-24.51761 3.34997 1.05248 MAXIMUM

-11.19971 178.71433 1.35307 SADDLE

176.16645 -179.01403 3.34646 MAXIMUM

number that we have found with one unbounded orbit. In the second
case we have 3 minimum, no maximum and 3 saddle points: this is
possible only with unbounded orbits because in this case the existence
of a maximum point is no more granted (the domain R×S1 is no more
compact). The values of the critical points, the corresponding values of
d and the type of singularity are given in Tables IV,V.

The mutual elements used for these 4 examples are given in Table III.
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Table III Mutual elements for the examples given in this section, with the
number of the figures they are referring to.

Figure number Q e1 q e2 iM ω
(1)
M ω

(2)
M

4 1.0 0.0 0.48 0.6 60.0◦ 16.0◦ 176.0◦

5 0.585 0.415 0.462 0.615 80.0◦ 8.0◦ 176.0◦

6 1.0 0.6 1.2 1.1 40.0◦ 73.0◦ 69.0◦

7 1.0 0.5 1.2 1.1 66.0◦ 4.0◦ 136.0◦

Table IV Critical points for the example in Figure 6.

V v distance type

-69.49877 -58.67705 0.34619 MINIMUM

76.74888 69.25935 0.81742 MINIMUM

46.83819 44.61670 0.83243 SADDLE

-169.88880 62.56604 4.94731 SADDLE

169.88879 -56.53012 5.00016 SADDLE

176.02598 -20.46019 5.00725 MAXIMUM
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Figure 6 Level curves of the squared distance for an elliptic and a hyperbolic orbit:
in this case we find 2 minimum and 1 maximum points (see Table IV).
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Table V Critical points for the example in Figure 7.

V v distance type

-160.6036221 66.6649070 1.44214 MINIMUM

52.8597535 -53.9730298 1.48730 MINIMUM

138.6616780 32.7954913 1.50853 MINIMUM

160.4380015 50.0738056 1.51541 SADDLE

102.1493828 -8.3520246 1.52564 SADDLE

-73.5585717 7.6851159 2.18797 SADDLE
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Figure 7 Level curves of the squared distance for an elliptic and a hyperbolic orbit:
in this case we find 3 minimum and no maximum points (see Table V). This is
possible only with unbounded orbits.

We also present in Table VI the results of the computation of the
MOID between asteroid orbits from the catalog of the ASTDyS web-
site11 with absolute magnitude ≤ 8 and semimajor axis ≤ 10 AU : we
write in this table all the cases with MOID ≤ 0.001 AU .

9. Conclusions and future work

We have introduced an algebraic method to compute the critical points
of the distance function between two orbits: this algorithm can be

11 The Asteroids Dynamic Site at the University of Pisa: web address
http://hamilton.dm.unipi.it/astdys
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Table VI The pairs of numbered asteroids with semimajor axis
≤ 10 and absolute magnitude H ≤ 8 such that the MOID of their
orbits is ≤ 0.001 AU .

1st asteroid 2nd asteroid MOID (AU)

number H number H

10 5.360 48 6.920 0.0005346

7 5.460 20 6.400 0.0001038

7 5.460 115 7.470 0.0002608

6 5.660 43 7.600 0.0004686

532 5.880 511 6.170 0.0003827

16 5.910 324 6.850 0.0006213

39 6.050 61 7.510 0.0002160

9 6.210 804 7.720 0.0000740

14 6.270 144 7.880 0.0006550

52 6.270 579 7.710 0.0004601

52 6.270 211 7.720 0.0006535

20 6.400 55 7.630 0.0000689

11 6.480 13 6.690 0.0004247

11 6.480 17 7.510 0.0002454

31 6.660 416 7.620 0.0006301

471 6.680 230 7.290 0.0001094

471 6.680 194 7.550 0.0006347

57 6.730 104 7.970 0.0005222

324 6.850 104 7.970 0.0003598

27 6.890 116 7.710 0.0009039

130 6.950 100 7.500 0.0004337

28 6.960 17 7.510 0.0003593

216 6.970 179 7.940 0.0000599

23 6.970 702 7.240 0.0005057

192 7.050 849 7.920 0.0001213

202 7.060 674 7.240 0.0006416

250 7.270 595 7.810 0.0009579

51 7.290 287 8.000 0.0002824

128 7.310 110 7.600 0.0001421

37 7.320 85 7.450 0.0008676

42 7.340 145 7.950 0.0006918

96 7.480 55 7.630 0.0004209

148 7.500 152 7.990 0.0002459

194 7.550 154 7.640 0.0001583

194 7.550 779 7.830 0.0009616

54 7.640 579 7.710 0.0002502

76 7.770 595 7.810 0.0001334

76 7.770 168 7.830 0.0005114

59 7.910 762 7.960 0.0008442

70 7.960 152 7.990 0.0009790
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efficiently used to compute the MOID between two confocal orbits.
We can use the information given by the MOID for different purposes,
for example to measure the impact hazard of Near Earth Asteroids
with the Earth. The speed and robustness of this algorithm is such to
allow also large scale computations, to select in reasonable time pairs
of asteroids suitable to be used for the problem of mass determination.
In fact we can use this algorithm as a filter to select, among the orbits
of all the asteroids, the ones with low MOID with respect to the orbits
of big asteroids: we can propagate them forward in time and, if there
is a close approach (possible only if the MOID is small), we can study
their deflection.

10. Appendix

10.1. Algebraic formulation with the angular shifts

Using the variable change (13) and the relations

1 + E cos(Ξ + α) =
1

1 + z2

[

(1 − E cosα)z2 − 2zE sinα + (1 + E cosα)
]

;

sin(Ξ + α) =
1

1 + z2

[

−z2 sin α + 2z cosα + sin α
]

;

E + cos(Ξ + α) =
1

1 + z2

[

(E − cosα)z2 − 2z sin α + (E + cosα)
]

;

1 + e cos(ξ + β) =
1

1 + w2

[

(1 − e cosβ)w2 − 2we sin β + (1 + e cosβ)
]

;

sin(ξ + β) =
1

1 + w2

[

−w2 sinβ + 2w cosβ + sin β
]

;

e + cos(ξ + β) =
1

1 + w2

[

(e − cosβ)w2 − 2w sin β + (e + cosβ)
]

;

we transform the problem (12) into the polynomial system

{

fα,β(z, w) = f4(w) z4 + f3(w) z3 + f2(w) z2 + f1(w) z + f0(w) = 0
gα,β(z, w) = g2(w) z2 + g1(w) z + g0(w) = 0

(24)
with

f0(w) = p(1 + E cosα)
〈

P sinα −Q(E + cosα), (1 − w2)a + 2wb
〉

+ EP sin α fβ
e (w) ;

f1(w) = 2p
〈

P [cosα + E(cos2 α − sin2 α)] + Q sin α(1 + 2E cosα + E2), (1 − w2)a + 2wb
〉

+

+2EP cosα fβ
e (w) ;

f2(w) = −6pE sin α
〈

P cosα + Q sinα, (1 − w2)a + 2wb
〉

;

f3(w) = 2p
〈

P [cosα − E(cos2 α − sin2 α)] + Q sin α(1 − 2E cosα + E2), (1 − w2)a + 2wb
〉

+
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+2EP cosα fβ
e (w) ;

f4(w) = −p(1− E cosα)
〈

P sin α + Q(E − cosα), (1 − w2)a + 2wb
〉

− EP sin α fβ
e (w) ;

and

g0(w) = P fβ
e (w)

〈

tβe (w),A
〉

+ ep(1 + E cosα)(1 + w2)
[

− sinβw2 + 2 cosβw + sin β
]

;

g1(w) = 2P fβ
e (w)

〈

tβe (w),B
〉

− 2epE sin α(1 + w2)
[

− sinβw2 + 2 cosβw + sin β
]

;

g2(w) = −P fβ
e (w)

〈

tβe (w),A
〉

+ ep(1 − E cosα)(1 + w2)
[

− sinβw2 + 2 cosβw + sin β
]

.

where we have introduced the scalar factor

fβ
e (w) =

[

(1 − e cos β)w2 − 2we sin β + (1 + e cos β)
]

,

and the vector

tβe (w) = p
[

−w2 sinβ + 2w cos β + sinβ
]

−q
[

(e + cos β)w2 − 2w sinβ + (e − cosβ)
]

.

Remark: By (13) we have sent to infinity the points with the V com-
ponent equal to π + α and the points with the v component equal to
π + β.

10.2. Elimination of the variable z and factorization of

the resultant

The resultant Resα,β(w) = Res(fα,β(z, w), gα,β(z, w), z) is given by the
determinant of the Sylvester matrix

Sα,β(w) =



















f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
f2 f3 g0 g1 g2 0
f1 f2 0 g0 g1 g2

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0



















;

it is generically a 20-th degree polynomial in the variable w.

We want to use the basic properties of the determinants to extract
the factor fβ

e (w) from the resultant. Let us define the following terms:

Aα
E =

E sinα

1 + E cos α
;

Bα
E =

E sinα

1 − E cos α
;

Cα
E =

E2 − 1 + E2 sin2 α

(1 + E cosα)2
;

Dα
E =

E2 − 1 + E2 sin2 α

(1 − E cos α)2
;
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Eα
E =

E sinα

(1 + E cos α)3

[

3(E2 − 1) + E2 sin2 α
]

;

Fα
E =

E sinα

(1 − E cos α)3

[

3(E2 − 1) + E2 sin2 α
]

.

We perform these operations on the rows of Sα,β to factorize the resul-
tant Resα,β(w):

1. substitute the 3rd row with the linear combination

(3rd row) + Bα
E (2nd row) + Aα

E (4th row) + Dα
E (1st row) +

+ Cα
E (5th row) + Eα

E (6th row) ;

2. substitute the 4th row with the linear combination

(4th row) + Bα
E (3rd row) + Aα

E (5th row) + Dα
E (2nd row) +

+ Cα
E (6th row) + Fα

E (1st row) .

We obtain the matrix

S̃α,β(w) =



















f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
r3,1 r3,2 r3,3 r3,4 r3,5 r3,6

r4,1 r4,2 r4,3 r4,4 r4,5 r4,6

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0



















;

where

r3,1(w) = f2(w) + Bα
Ef3(w) + Aα

E f1(w) + Dα
Ef4(w) + Cα

Ef0(w) = fβ
e (w) r̃3,1 ;

r3,2(w) = f3(w) + Bα
Ef4(w) + Aα

E f2(w) + Cα
Ef1(w) + Eα

Ef0(w) = fβ
e (w) r̃3,2 ;

r3,3(w) = g0(w) + Bα
Eg1(w) + Dα

Eg2(w) = fβ
e (w) r̃3,3(w) ;

r3,4(w) = g1(w) + Bα
Eg2(w) + Aα

Eg0(w) = fβ
e (w) r̃3,4(w) ;

r3,5(w) = g2(w) + Aα
Eg1(w) + Cα

Eg0(w) = fβ
e (w) r̃3,5(w) ;

r3,6(w) = Aα
Eg2(w) + Cα

Eg1(w) + Eα
Eg0(w) = fβ

e (w) r̃3,6(w) ;

r4,1(w) = f1(w) + Bα
Ef2(w) + Aα

E f0(w) + Dα
Ef3(w) + Fα

Ef4(w) = fβ
e (w) r̃4,1 ;

r4,2(w) = r3,1(w) ;

r4,3(w) = Bα
Eg

0
(w) + Dα

Eg1(w) + Fα
Eg2(w) = fβ

e (w) r̃4,3(w) ;

r4,4(w) = r3,3(w) ;

r4,5(w) = r3,4(w) ;

r4,6(w) = r3,5(w) ;

for some polynomials r̃i,j. It follows that

Resα,β(w) = det(S̃α,β(w)) =
[

fβ
e (w)

]2
det(Ŝα,β(t))
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with

Ŝα,β(w) =



















f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
r̃3,1 r̃3,2 r̃3,3 r̃3,4 r̃3,5 r̃3,6

r̃4,1 r̃4,2 r̃4,3 r̃4,4 r̃4,5 r̃4,6

f0 f1 0 0 g0 g1

0 f0 0 0 0 g0



















.

Remark: The factor fβ
e (w) that can be collected with multiplicity 2

from the resultant Resα,β(w), corresponds to the term 1 + e cos(ξ + β)
in (12) and has the roots

w1,2 =
e sinβ ±

√
e2 − 1

1 − e cos β
.

We can apply the strategy described in Subsections 4.3, 4.4 to com-
pute the roots of system (24).

10.3. Some particular cases

Case e = 0

The second equation in (12) gives us

〈p sin(ξ + β) − q cos(ξ + β),A cos Ξ + B sinΞ〉 =

= 〈a sin ξ − b cos ξ,A cos Ξ + B sinΞ〉 = 0

so that, applying the variable change (13), we obtain

(w2−1)
[

〈b,A〉(1 − z2) + 2〈b,B〉z
]

+2w
[

〈a,A〉(1 − z2) + 2〈a,B〉z
]

= 0

whose degree in the variable w has decreased from 4 to 2 with respect
to the general case.

Case E = 0

By a symmetry argument, applying (13) to the first equation in (12)
we obtain

(z2−1)
[

〈B, a〉(1 − w2) + 2〈B, b〉w
]

+2z
[

〈A, a〉(1 − w2) + 2〈A, b〉w
]

= 0

whose degree in the variable z has decreased from 4 to 2 with respect
to the general case.

Case e = 1

The second equation in (12) can be written as

P [1 + cos(ξ + β)] 〈p sin(ξ + β) − q [1 + cos(ξ + β)] ,A sinΞ + B cos Ξ〉 +

+p sin(ξ + β) [1 + E cos(Ξ + α)] = 0 .

kep_dist.tex; 23/03/2005; 9:42; p.30



Critical points of the Keplerian distance 31

We observe that






















1 + cos(ξ + β) = (1 − cos β)
(w − w+)2

1 + w2

sin(ξ + β) = − sinβ
(w − w+)(w − w−)

1 + w2

where























w+ =
cos β + 1

sinβ

w− =
cos β − 1

sinβ

so that each of the terms g0(w), g1(w), g2(w) in (24) has in this case a
factor (w−w+). Applying the linear combinations used to compute the

matrix S̃α,β(w) we obtain a factor fβ
1 (w) = (1− cos β)(w −w+)2: thus,

using the basic properties of determinants, we can extract a factor
(w − w+)8 from the resultant Resα,β(w). These solutions have to be
discarded because they correspond to points at infinity on the parabolic
orbit, as we can check by passing to the limit for β → 0. Note that in
this case the application of the variable change (13) with β = 0 prevents
from searching just this point.

Case E = 1

By a symmetry argument we can prove that the value of z correspond-
ing to

z+ =
cosα + 1

sinα
is a root with multiplicity 8 of Res∗α,β(z) = Res(fα,β, gα,β , w)(z), that
is the resultant of the polynomials fα,β, gα,β with respect to the other
variable w. These roots have also to be discarded.

Note that using the angular shifts we can avoid a degenerate case
discussed before: we can select values α, β such that the degrees of
fα,β, gα,β as polynomials in the variable z are 4 and 2 respectively also
for E = 1. This allows to compute Resα,β(w) as the determinant of the
6 × 6 matrix Sα,β(w) also in this case.

10.4. Pairs of real solutions

We shall give a simple example of a polynomial system of two equa-
tions in two variables, with real coefficients, such that the resultant
computed with respect to different variables gives a different number
of real solutions. Let us consider the system

{

u(v2 + 1) = 0
v(u2 − 1) = 0

;

the resultant with respect to v is

det





u (u2 − 1) 0
0 0 (u2 − 1)
u 0 0



 = u(u2 − 1)2 ,
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while the resultant with respect to u is

det





v (v2 + 1) 0
0 0 (v2 + 1)

−v 0 0



 = −v(v2 + 1)2 = 0 .

Thus we have 3 real solutions u = 0, 1,−1 (the last two with multiplicity
2 each) for the first equation, and only one real solution v = 0 for the
second (the other solutions are v = ±i with multiplicity 2 each).
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