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Abstract

We introduce a regularization for the minimal distance maps, giving

the locally minimal values of the distance between two points on two con-

focal Keplerian orbits. This allows to define a meaningful uncertainty for

the minimal distance also when orbit crossings are possible, and it is use-

ful to detect the possibility of collisions or close approaches between two

celestial bodies moving approximatively on these orbits, with important

consequences in the study of their dynamics. An application to the orbit

of a recently discovered near–Earth asteroid is also given.
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1 Introduction

The orbit distance between two Keplerian orbits1, solutions of the Kepler prob-
lem with a common center of force, is useful to know if two celestial bodies
moving along these orbits can collide or undergo a very close approach: if the
orbit distance is large enough there is no possibility of such an event, at least
during the time span in which the Keplerian solutions are a good approximation
of the real orbits.

When a new celestial body is discovered we do not know its orbit at first, in
fact we can only observe the positions of that body from another one at different
times, typically from the Earth or from an orbiting station, like the Hubble space
telescope. The observations of the body allow to compute its orbit by means
of the orbit determination methods, e.g. Gauss’ or Laplace’s method (see [14]).
Nevertheless the observations are affected by errors due to different reasons2

and already in classical orbit determination methods the orbit was given with
an uncertainty, accounting for the presence of observational errors (see [8]).

The orbit uncertainty of recently discovered asteroids (or comets) is typi-
cally large, so that we usually have a large region of possible initial conditions

1the distance between the two orbits as geometrical sets
2instrumental errors, atmospheric turbulence imperfections, star catalog errors and so on
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to be used to predict the motion. Furthermore the motion of such bodies can
be regular or chaotic, even strongly, and the large uncertainty in the orbit de-
termination makes the study of their dynamics a particularly difficult problem,
with different possible features.

As long as an asteroid has no close approaches with a massive body of the
Solar system, like a planet, its Keplerian heliocentric orbit (solution of a two-
body problem with the Sun) is a good approximation of the path followed by the
asteroid for a comparatively short time span. In this case we can compute the
asteroid evolution for a longer time span by the classical perturbation theory
(see [17]), that takes into account the effects on the Keplerian orbit due to the
presence of the planets.

On the other hand, if there are close approaches with a planet, the asteroid is
strongly perturbed and its dynamics can even be dominated by the gravitational
attraction of the other approaching body, as in the case of an Earth-crossing
asteroid. When an asteroid undergoes a very close encounter with our planet
its orbit can be well approximated, during the encounter, by a branch of a
geocentric Keplerian orbit; the initially computed heliocentric orbit is largely
modified by the encounter, to the point that the actual path of the asteroid
cannot be computed by means of the perturbation theory (see [18]). Thus the
study of some dynamical properties of the asteroids, like their chaotic or regular
behavior, is strictly dependent on the occurrence of close approaches, that can
be excluded by an estimate of the orbit distance; actually the computation of
the latter should precede the study of the asteroid dynamics.

Once an orbit of an asteroid and its uncertainty are given, additional obser-
vations make the uncertainty smaller, but the difficulty itself to follow the body
up in the sky is related to the occurrence of close approaches with the planets.

Furthermore it is useful to produce and update an observation priority list,
based on the possible orbit distance with the Earth, that shows the astronomers
which are the asteroids that should be followed up with particular care.

For all these reasons a mathematical theory to compute the uncertainty of
the orbit distance is an important tool for the scientific applications.

A simple geometric consideration suggests that two confocal orbits may get
close at more than one pair of points, thus it is necessary to compute not only
the absolute minimum, called MOID3 in the literature, of the distance function
d between two points along the orbits, but all its local minimum values. We can
easily obtain these values by computing all the critical points of the function
d2, squared to be smooth also at the orbit crossing points.

An approximation of the orbit distance can be easily computed by densely
sampling the two orbits and comparing the values of the distance d at the
pairs of sampled points. We can use the corresponding approximation of the
absolute minimum point as a starting guess of an iterative method, like Newton-
Raphson’s, to obtain a more precise result by computing the solution of the
critical points equation (1), as in [15]. We can also follow a similar procedure
for the other local minimum points, but this algorithm may converge to a wrong

3Minimal Orbit Intersection Distance
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critical point if the starting guess is not close enough to the desired solution.
The possibility of a wrong choice for the starting guess of an iterative method
appears more evident by considering the maximum number of critical points
that can occur in this problem: in [9], [10] there are examples with up to twelve
critical points and up to four local minima of d. The critical points may even
be infinitely many, but only in very rare cases, completely determined in [10].

Recently some new methods have been proposed to compute the critical
points of d2 using tools from the algebraic elimination theory (see [12], [9], [10]).
These methods deal with the problem in a polynomial form and the solutions
can be computed more easily and in a more reliable way than by solving general
nonlinear equations. Nevertheless, even overcoming the difficulties arising in
the computation of the critical points of d2, additional problems appear when
we take into account the uncertainty in the knowledge of the orbits.

The uncertainty of the orbit distance can be generically computed by the
uncertainty propagation formula (24), but the possibility of orbit crossings pro-
duces a singularity in this computation. A first difficulty is that relation (24)
involves the partial derivatives of the orbit distance with respect to the ele-
ments, but these derivatives do not exist when the two orbits intersect each
other (see Section 3). A trivial regularization of the distance, allowing the ex-
istence of these derivatives, is given by the squared orbit distance d2

min (it is
a regular map of the elements also where it vanishes), or by Plummer’s soft-
ening

√

d2
min + ε2 with a small real number ε, as used in [2] to regularize the

two-body potential. Nevertheless the partial derivatives of these regularized
distances with respect to the orbital elements vanish at crossing configurations,
thus we cannot use the uncertainty propagation formula (24) as well.

An additional (and more worrying) difficulty is that the uncertainty of a
non-zero but small orbit distance may allow negative values of the distance,
that are meaningless. Both these problems are particularly unpleasant because
we would like to know the uncertainty just when the orbit distance can be small
or vanishing, that is when a collision or a close approach is possible.

A solution has been proposed in [3] by computing an approximation for the
MOID: in several cases the local minima of the distance d occur close to the
mutual nodes, intersections of the line common to both orbital planes with the
orbits themselves (see Appendix 8.2). Thus we can consider the straight lines
representing a linearization of the orbits at the mutual nodes (both ascending
and descending) and take the distance between these lines as two approximations
of the local minima. It is also possible to give a sign to these distances and then
to overcome the difficulties explained before.

The problems with this approach are the following: 1) if the mutual orbital
inclination IM is zero the mutual nodes are not defined, 2) for small values
of IM the minimum points are usually not close to the mutual nodes 3) the
approximations of the local minima at the mutual nodes cannot be more than
two, while there are known cases with up to four local minimum points (see [9],
[10]).

The purpose of this paper is to define regular maps, functions of the pa-
rameters defining the two–orbit configurations, giving the local minima of d
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without any approximations and allowing negative values; using these maps we
can compute a meaningful uncertainty of the orbit distance. The main idea is
to perform a suitable cut–off of the two–orbit configuration domain that allow
to change the sign of the distance on selected subsets of the remaining domain
in a way that the resulting map is analytic.

In Section 2 we introduce the Keplerian distance function d and the minimal
distance maps related to the critical points of d2; we also discuss the singularities
of these maps. Section 3 is devoted to the regularization of the singularity given
by the vanishing of the orbit distance. The computation of the uncertainty of the
minimal distance, based on the uncertainty in the determination of the orbits, is
explained in Section 4, where we also propose to use different definitions of the
distance according to the singularities that the uncertainty of the orbits may
lead to. We conclude this work by discussing the case of a recently discovered
near–Earth asteroid, Apophis (99942), that has been carefully followed up by
the astronomers to exclude the possibility of an impact with the Earth in the
next future.

2 The Keplerian distance function and its criti-

cal points

Let us consider two Keplerian orbits with a common center of force. As it is
well known, these orbits are conics, bounded (circles, ellipses) or unbounded
(parabolas, hyperbolas)4. They have a common focus as they share the same
center of force.

Different sets of orbital elements, e.g. Keplerian, equinoctial or cometary
(see [4] and Appendix 8.2, 8.3) can be used to describe them. We shall adopt
a general point of view, allowing different choices of the orbital elements: let
us consider a set E = (E1, E2) of 10 elements, composed by two subsets of
5 elements each, such that Er defines the geometric configuration of the r-th
orbit (r = 1, 2). Furthermore we consider the vector V = (v1, v2), consisting
of two parameters along the orbits. For example, one possible choice for E
is E1 = (q1, e1, i1, Ω1, ω1), E2 = (q2, e2, i2, Ω2, ω2) where qr are the pericenter
distances, er the eccentricities, ir the inclinations, Ωr the longitudes of the
ascending node and ωr the pericenter arguments; then we can select (v1, v2) as
the vector of the true anomalies.

Given a reference frame centered in the common focus, let X1 = X1(E1, v1),
X2 = X2(E2, v2) ∈ R3 be the Cartesian coordinates of two bodies on the two
orbits, with components (x1, y1, z1), (x2, y2, z2) respectively. Moreover we shall
use 〈 , 〉 for the Euclidean scalar product.

We shall always assume that the orbital elements (E , V ) satisfy the following
basic regularity property:

Xr is an analytic function of the elements (Er, vr) for r = 1, 2 .

4we shall not deal with the degenerate case of rectilinear orbits, possible only if the two-
body angular momentum is zero and leading to collision with the central body
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The elements traditionally used in Celestial mechanics and in Astronomy
fulfill this property in a neighborhood of almost all the orbit configurations.
Different elements are singular for different geometric configurations, hence it is
convenient to have a general formulation of the problem allowing to change the
choice of the orbital elements.

Definition 1. For each choice of the orbit parameters E we define the Keplerian
distance function d as the map

V 3 V 7→ d(E , V )
def
=
√

〈X1 −X2,X1 −X2〉 ∈ R+ ,

where V = T2 = S1 × S1 (a two–dimensional torus) if both orbits are bounded,
V = S1 ×R (an infinite cylinder) if only one is bounded, and V = R×R if they
are both unbounded.

In the following we shall denote the Keplerian distance function with d(E , ·)
if we want to stress the dependence on the selected configuration E .

Let Vj(E) = (v
(j)
1 (E), v

(j)
2 (E)) be the values of the j-th critical point of

d2(E , ·), solution of
∇V d2(E , V ) = 0 , (1)

with

∇V d2 =

(

∂d2

∂v1
,
∂d2

∂v2

)t

,

and let

X
(j)
1 (E) = X1(E1, v

(j)
1 (E)) ; X

(j)
2 (E) = X2(E2, v

(j)
2 (E))

be the corresponding Cartesian coordinates. The number of critical points of d2

is generically finite; in [10] it has been proved that they can be infinitely many
only in the case of two coplanar (concentric) circles or two overlapping conics.
Except for these two very peculiar cases, we can define the Keplerian distance
at the j-th critical point of d2 as

dj(E)
def
= d(E , Vj(E)) =

=

√

〈X
(j)
1 (E) −X

(j)
2 (E),X

(j)
1 (E) −X

(j)
2 (E)〉 .

Definition 2. Calling E the two–orbit configuration space, locally homeomor-
phic to R10, we define the maps

E 3 E 7→ Vj(E) ∈ V ; E 3 E 7→ dj(E) ∈ R+ ,

representing the j-th critical point of d2(E , ·) and the corresponding value of the
distance for a given configuration E.

Of course the number itself of critical points, and then the range of the index
j, may vary with the selected configuration; however this number can change at
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a configuration E∗ only if the Hessian matrix of the squared Keplerian distance
d2(E∗, ·) is degenerate at some critical point of d2(E∗, ·) (see [5]), that is if

detHV (d2)(E∗, Vj(E∗)) = 0 , (2)

where

HV (d2) =













∂2d2

∂v2
1

∂2d2

∂v2∂v1

∂2d2

∂v1∂v2

∂2d2

∂v2
2













is the Hessian matrix of d2(E , ·). Thus, if the non–degeneracy condition

detHV (d2)(Ē , Vj(Ē)) 6= 0 (3)

holds for a given configuration Ē and for every index j of the critical points
of d2(Ē , ·), then there exists an open neighborhood U ⊂ E of Ē such that the
number of critical points of d2(E , ·) is the same for each E ∈ U. We can define
the maps Vj and dj in the neighborhood U for every index j of such critical
points. Moreover we can choose U and the order of the critical points in a way
that each map Vj is analytic5: this follows from the implicit function theorem
applied to the critical points equation

∇V d2(E , V ) = 0,

where ∇V d2 is a real analytic function (see [6]).
The partial derivatives of Vj with respect to the element Ek at E ∈ U are given
by

∂Vj

∂Ek

(E) = −
[

HV (d2)(E , Vj(E))
]−1 ∂

∂Ek

∇V d2(E , Vj(E)) , (4)

for k = 1 . . . 10, where

∂

∂Ek

∇V d2 =

(

∂2d2

∂Ek∂v1
,

∂2d2

∂Ek∂v2

)t

.

We shall be particularly interested in the local minimum points, correspond-
ing to the subset of indexes jh:

E 7→ djh
(E)

def
= dh(E) (locally minimal distance) . (5)

From now on we shall use for brevity the index h instead of jh to mean the
quantities related to the local minima.

5indeed each map Vj is defined on a different sheet of a Riemann surface that covers the
two–orbit configuration space (see [16])
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When at least one orbit is bounded we define the absolute minimum map6

E 7→ dmin(E)
def
= min

h
dh(E), (6)

that for each two–orbit configuration returns the orbit distance.
The maps dh and dmin just introduced have the following singularities:

i) dh and dmin are not differentiable where they vanish (see Section 3);

ii) the absolute minimum point can be defined not univocally: when a two–
orbit configuration Ē admits two distinct points with the same value of
d(Ē , ·), that corresponds to the absolute minimum, then in a neighborhood
of Ē we can have two local minima that exchange their role as absolute
minimum and dmin can lose its regularity even without vanishing;

iii) when a bifurcation occurs the definition of the maps dh may become am-
biguous after the bifurcation point. Note that this ambiguity does not
occur for the dmin map, that is defined by choosing the branch with the
lowest value of the distance. The degeneration of the Hessian matrix of
d2(E , ·), leading to bifurcation phenomena, is also related to a loss of reg-
ularity of these maps (see relation (4)).

In Figure 1 we sketch the singularities just explained.
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Figure 1: We sketch the three types of singularity of the maps dmin and dh. The figure on
the left shows the loss of regularity corresponding to the vanishing of dmin (a similar sketch
is also valid for dh). The figure in the middle shows the loss of regularity of the map dmin

(= min{d1, d2} in this case, drawn with solid line) due to the change of role between two local
minima as absolute minimum (with a non–vanishing orbit distance). On the right we show a
bifurcation of a local minimum into three points, e.g. two minimum points and a saddle: the
map d1 is not univocally defined after the bifurcation point.

In the following sections we shall study only the properties of the maps dh,
because the map dmin has the additional singularity explained above in ii). In
any case the knowledge of the minimal distances dh allows to determine also
the orbit distance dmin.

6This hypothesis ensures the existence of the absolute minimum of the distance d. In the
case of two unbounded orbits the infimum of d may be reached at infinity, see [1].
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3 Regularization of the minimal distance maps

In this section we shall prove that the maps dh, defined in (5), are not regular
functions of the orbital elements E = (E1, . . . , E10) where they vanish, but it
is possible to remove this singularity by performing a suitable cut–off of its
definition domain and changing the sign of these maps on selected subsets of
the smaller resulting domain.7

y−axis

x−axis

y−axis

x−axis

Figure 2: On the left we show the graphic of the function f : the directional derivatives at
(x, y) = (0, 0) do not exists for whatever choice of the direction. On the right we show the
graphic of the regularized function f̃ , extended to the origin (0, 0) by continuity: in this case
every directional derivative at (x, y) = (0, 0) does exist.

We shall illustrate the basic idea of the regularization by a simple example: let
us consider the function f : R × R → R+, defined as

f(x, y) =
√

x2 + y2 ;

its directional derivatives at (x, y) = (0, 0) do not exist for every choice of the
direction. We cut off the line {(x, y) |x = 0} from the definition domain and
change the sign of the function on the set {x > 0}: the result is the continuous
function

f̃(x, y) =

{

−f(x, y) for x > 0
f(x, y) for x < 0

.

We can extend f̃ by continuity to the origin by setting f̃(0, 0) = 0, thus we
obtain a function having all the directional derivatives at (x, y) = (0, 0).

3.1 Derivatives of the minimal distance maps

Let us consider a minimal distance map dh : U → R+ and let Ē ∈ U be a two–
orbit configuration with dh(Ē) 6= 0. The derivative of dh at Ē with respect to

7the same results are also valid for the map dmin , apart maybe the configurations with
two intersection points.
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the orbital element Ek is given by

∂dh

∂Ek

(Ē) =
1

2dh(Ē)

∂d2
h

∂Ek

(Ē) for k = 1 . . . 10 ,

where, using the chain rule,

∂d2
h

∂Ek

(Ē) =
∂d2

∂Ek

(Ē , Vh(Ē)) +
∂d2

∂V
(Ē , Vh(Ē))

∂Vh

∂Ek

(Ē)

with
∂Vh

∂Ek

(Ē) = −
[

HV (d2)(Ē , Vh(Ē))
]−1 ∂

∂Ek

∇V d2(Ē , Vh(Ē)) .

Moreover we have
∂d2

h

∂Ek

(Ē) =
∂d2

∂Ek

(Ē , Vh(Ē)) , (7)

in fact
∂d2

∂V
(Ē , Vh(Ē)) = 0

because Vh(Ē) is a critical point of d2(Ē , ·) .

Using (7) and the differences

∆ = X1 −X2 ; ∆h = X
(h)
1 −X

(h)
2 (8)

we can write

∂d2
h

∂Ek

(Ē) = 2

〈

∆h(Ē , Vh(Ē)),
∂∆

∂Ek

(Ē , Vh(Ē))

〉

,

so that, if dh(Ē) 6= 0, we have

∂dh

∂Ek

(Ē) =

〈

∆̂h(Ē , Vh(Ē)),
∂∆

∂Ek

(Ē , Vh(Ē))

〉

(9)

where

∆̂h =
∆h

dh

(10)

is the unit vector map that, for each configuration E , has the direction of the
line joining the points on the two orbits that correspond to the local minimum
point Vh(E).

On the other hand, if Ē is such that dh(Ē) = 0, then expression (10) becomes
singular and the limit of ∆̂h(E) for E → Ē does not exist.

In the next paragraph we shall show that generically the direction (but not
the orientation) of the unit vector ∆̂h is unique also in the limit E → Ē with
dh(Ē) = 0. Intuitively this is due to a geometric characterization of the critical
points of the squared distance function: the line joining two points on the curves
that correspond to a critical point must be orthogonal to both tangent vectors
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to the curves at those points (see [10]). Thus, if the tangent vectors to the
two orbits at the intersection point are independent they define univocally an
orthogonal direction.

Nevertheless if dh(Ē) = 0 the partial derivatives ∂dh

∂Ek

(Ē) generically do not
exist; below we give a proof of this fact.

Let êk, k = 1 . . . 10, be the unit vectors of the canonical basis in R10. First
we need this result:

Lemma 1. Let Ē ∈ U such that dh(Ē) = 0. From the basic regularity property
for each k = 1 . . . 10 only the following two cases are possible:

(i) ∃ η̄ > 0 such that dh(Ē + ηêk) ≡ 0, ∀ η with |η| ≤ η̄ ;

(ii) ∃ η̄ > 0 such that dh(Ē + ηêk) 6= 0, ∀ η with 0 < |η| ≤ η̄ .

Proof. It is a consequence of the analyticity of the maps (E , V ) 7→ ∆(E , V )
and U 3 E 7→ Vh(E), which implies that also the composite map R 3 η 7→
∆h(Ē + ηêk) ∈ R3 is analytic for k = 1 . . . 10.

If for a given k the case (i) of Lemma 1 holds, then the k-th partial derivative
exists and is zero:

∂dh

∂Ek

(Ē) = 0 .

On the other hand, if (ii) holds, we have dh(Ē + ηêk) > 0 for |η| > 0 small
enough. Then by Lagrange’s theorem the right and left partial derivatives of dh

at Ē are opposite, in fact we have

∂+dh

∂Ek

(Ē) = lim
η1→0+

dh(Ē + η1êk) − dh(Ē)

η1
= lim

η1→0+

∂dh

∂Ek

(ξk(η1)) =

= − lim
η2→0−

∂dh

∂Ek

(ξk(η2)) = − lim
η2→0−

dh(Ē + η2êk) − dh(Ē)

η2
= −

∂−dh

∂Ek

(Ē)

where ξk(η1), ξk(η2) are two points on the segments joining Ē and Ē + ηr êk,
with r = 1, 2, and the partial derivative does not exist. The relation between
the limits of the left and right partial derivatives is due to the representation
formula (9) and to the following relation

lim
η→0+

∆̂h(Ē + ηêk) = − lim
η→0−

∆̂h(Ē + ηêk) .

As case (i) of Lemma 1 is a peculiar case, we obtain the generic non–existence
of the partial derivatives ∂dh

∂Ek

(Ē).
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3.2 Removal of the singularity

We can remove the singularity appearing in (9) for the configurations Ē ∈ U

such that dh(Ē) = 0 by performing the following operations: first we choose a
subset of the domain U to cut–off, that properly contains the set

{dh = 0}
def
= {E ∈ U : dh(E) = 0} ;

then we change the sign of ∆̂h in different subsets of the smaller resulting do-
main Uh, depending on the selected minimum point index h. Finally, for each
E ∈ Uh, we give dh(E) the same sign as the one selected for ∆̂h(E) in the previ-
ous step and we show that the resulting function, called d̃h, is continuous and
continuously extendable to a wider domain Ũh, that includes all the orbit cross-
ings but the tangent ones (see Definition 3). In Proposition 2 we shall see that
tangent crossing configurations correspond to the only crossing configurations
where the Hessian matrix is degenerate at the crossing point. In Section 3.4 we
shall prove that the maps d̃h are even analytic in Ũh.

We start by looking for the portions of the domain U to cut–off. For
each two–orbit configuration E = (E1, E2) ∈ U, the minimum point Vh(E) =

(v
(h)
1 (E), v

(h)
2 (E)) is in particular a critical point of d2(E , ·), hence it must fulfill

the relations
∂d2

∂v1
(E , Vh(E)) = 2 〈 τ1(E), ∆h(E) 〉 = 0 ;

∂d2

∂v2
(E , Vh(E)) = −2 〈 τ2(E), ∆h(E) 〉 = 0 ;

(11)

where
∆h = (∆(h)

x , ∆(h)
y , ∆(h)

z ) ;

τ1 = (τ1,x, τ1,y, τ1,z) ; τ2 = (τ2,x, τ2,y, τ2,z) ;

with

τ1,x(E) =
∂x1

∂v1
(E1, v

(h)
1 (E)) ; τ2,x(E) =

∂x2

∂v2
(E2, v

(h)
2 (E)) ;

τ1,y(E) =
∂y1

∂v1
(E1, v

(h)
1 (E)) ; τ2,y(E) =

∂y2

∂v2
(E2, v

(h)
2 (E)) ;

τ1,z(E) =
∂z1

∂v1
(E1, v

(h)
1 (E)) ; τ2,z(E) =

∂z2

∂v2
(E2, v

(h)
2 (E)) .

(12)

The vectors τ1(E), τ2(E) are tangent to the two orbits at the points X
(h)
1 (E),

X
(h)
2 (E), corresponding to Vh(E).

We define the matrixes maps

T =

(

τ1,x τ1,y τ1,z

τ2,x τ2,y τ2,z

)

(13)
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and

T1 =

(

τ1,y τ1,z

τ2,y τ2,z

)

; T2 =

(

τ1,z τ1,x

τ2,z τ2,x

)

; T3 =

(

τ1,x τ1,y

τ2,x τ2,y

)

.

Remark: The maps τ1, τ2, T , T1, T2, T3 are defined on the domain U. For sim-
plicity we have dropped the dependence on the index h.

Definition 3. We call tangent crossing configuration a two–orbit configuration
Ē ∈ U such that the two orbits intersect each other and the two tangent vectors
τ1(Ē), τ2(Ē) at the intersection point are parallel (in symbols τ1(Ē) ‖ τ2(Ē)). The
intersection point is a minimum point Vh(Ē) of d2(Ē , ·), with minimum value
dh(Ē) = 0, we shall say that it is a tangent crossing point.

Note that the existence of a tangent crossing point requires a zero mutual orbital
inclination. In the Appendix 8.1 we show that two Keplerian orbits with a
common focus cannot have more than two intersection points and when there
is a tangent crossing point the intersection is only one.

Remark: The matrix T (E) has rank < 2 if and only if the two tangent vectors
τ1(E), τ2(E) are parallel. In case of orbit crossing the matrix T (E) has rank < 2
if and only if E is a tangent crossing configuration.

We introduce the maps

S1 = ∆(h)
x det(T1) ; S2 = ∆(h)

y det(T2) ; S3 = ∆(h)
z det(T3) ; (14)

τ3 = τ1 ∧ τ2 = (det(T1), det(T2), det(T3)) (15)

and
W(T ) =

√

det(T1)2 + det(T2)2 + det(T3)2 ; (16)

they are all defined on the same domain U.

Let us consider a configuration E ∈ U. If we assume that S1(E) 6= 0 we have

∆
(h)
x (E) 6= 0 and det(T1(E)) 6= 0; then we can find a unique solution of the linear

system
{

τ1,y(E)∆
(h)
y (E) + τ1,z(E)∆

(h)
z (E) = −τ1,x(E)∆

(h)
x (E)

τ2,y(E)∆
(h)
y (E) + τ2,z(E)∆

(h)
z (E) = −τ2,x(E)∆

(h)
x (E)

(17)

with unknowns ∆
(h)
y (E) and ∆

(h)
z (E). The solutions are given by

∆(h)
y (E) = ∆(h)

x (E)
det(T2(E))

det(T1(E))
; ∆(h)

z (E) = ∆(h)
x (E)

det(T3(E))

det(T1(E))
.

If S1(E) 6= 0, by substituting the solutions of the linear equations (17) in
(10), we can write

∆̂h(E) =
| det(T1(E))|

det(T1(E))

∆
(h)
x (E)

|∆
(h)
x (E)|

τ̂3(E) (18)

12



where

τ̂3 =
1

W(T )
(det(T1), det(T2), det(T3)) .

In a similar way if S2(E) 6= 0 we can write

∆̂h(E) =
| det(T2(E))|

det(T2(E))

∆
(h)
y (E)

|∆
(h)
y (E)|

τ̂3(E) (19)

and, if S3(E) 6= 0,

∆̂h(E) =
| det(T3(E))|

det(T3(E))

∆
(h)
z (E)

|∆
(h)
z (E)|

τ̂3(E) . (20)

In conclusion, for each E ∈ U, if at least one of the maps S1, S2, S3 is different
from zero in E , we can write ∆̂h(E) in one of the form (18), (19), (20). We
cut–off the set

{S1 = S2 = S3 = 0}
def
= {E ∈ U : S1(E) = S2(E) = S3(E) = 0}

from the two–orbit configuration domain U and define

Uh = U \ {S1 = S2 = S3 = 0} .

We shall need the following results:

Lemma 2. We have these properties for the signs of the maps S1, S2, S3:

1. If S1S2 6= 0 then sign(S1) = sign(S2);

2. If S1S3 6= 0 then sign(S1) = sign(S3);

3. If S2S3 6= 0 then sign(S2) = sign(S3) .

Proof. These relations immediately follow from (18), (19) and (20).

The set

{W(T ) = 0}
def
= {E ∈ U : W(T )(E) = 0}

corresponds to the configurations E ∈ U such that τ1(E), τ2(E) are parallel.

Proposition 1. The following relations hold

(i) {W(T ) = 0} ( {S1 = S2 = S3 = 0};

(ii) {dh = 0} ( {S1 = S2 = S3 = 0};

(iii) {S1 = S2 = S3 = 0} \ {W(T ) = 0} ( {dh = 0}.

13



A0

A

A A1

2

3

Figure 3: With the aid of an Euler-Venn diagram we describe the subsets of the two–orbit
configuration space involved in the definition of d̃h, given in (21). In this figure A1 = {S1 = 0},
A2 = {S2 = 0}, A3 = {S3 = 0} and A0 = {W(T ) = 0} ( A1 ∩ A2 ∩ A3.

Proof. The inclusions in (i) and (ii) are trivial; furthermore they are strict
inclusions as the tangent vectors τ1, τ2 of a configuration E may be parallel
without having dh(E) = 0 and vice versa. Let us prove the inclusion in (iii): if
W(T )(E) 6= 0 for a given E ∈ U, then one of the components of τ3(E) is nonzero.

Assume det(T1(E)) 6= 0: as S1(E) = 0 we must have ∆
(h)
x (E) = 0 and the linear

system

T1(E)

(

∆
(h)
y (E)

∆
(h)
z (E)

)

=

(

−τ1,x(E) ∆
(h)
x (E)

−τ2,x(E) ∆
(h)
x (E)

)

=

(

0
0

)

has the unique solution ∆
(h)
y (E) = ∆

(h)
z (E) = 0. The cases det(T2(E)) 6= 0 and

det(T3(E)) 6= 0 are similar.

We define the regularized function d̃h : Uh → R by giving a sign to dh,
restricted to Uh, according to the following rules:

Definition 4.

d̃h :=







sign(S1) dh where S1 6= 0
sign(S2) dh where S2 6= 0
sign(S3) dh where S3 6= 0

. (21)

Note that d̃h is well-defined as the relations of Lemma 2 hold.

Using (iii) of Proposition 1 we can continuously extend the function d̃h to
the larger domain

Ũh = U \ {W(T ) = 0}

by defining d̃h(E) = 0 for each E ∈ {S1 = S2 = S3 = 0}\{W(T ) = 0}. We shall
still call d̃h this extended function.

In Section 3.4 we shall prove that d̃h : Ũh → R is an analytic function on
the extended definition domain Ũh, and its partial derivatives at a configuration

14



E ∈ Ũh are given by the formula

∂d̃h

∂Ek

(E) =

〈

τ̂3(E),
∂∆

∂Ek

(E , Vh(E))

〉

k = 1 . . . 10 . (22)

3.3 Tangent crossings and degenerate critical points

We study the relation between the occurrence of a tangent crossing and the
degeneration of the Hessian matrix of the squared Keplerian distance function
evaluated at the corresponding minimum point. In particular we prove the
following

Proposition 2. Let Ē be a two–orbit configuration with dh(Ē) = 0 and let
Vh(Ē) be the corresponding minimum point of d2(Ē , ·). Then Vh(Ē) is a tangent
crossing point if and only if the Hessian matrix HV (d2)(Ē , Vh(Ē)) is degenerate.

Proof. For a given configuration E the Hessian matrix at the minimum point
Vh(E) is

HV (d2)(E , Vh(E)) = 2





Π1(E) + |τ1(E)|
2

−〈τ1(E), τ2(E)〉

− 〈τ1(E), τ2(E)〉 −Π2(E) + |τ2(E)|2





where

Π1(E) =

〈

∂2X1

∂v2
1

(E1, v
(h)
1 (E)), ∆h(E)

〉

;

Π2(E) =

〈

∂2X2

∂v2
2

(E2, v
(h)
2 (E)), ∆h(E)

〉

;

thus the determinant of the Hessian matrix is

detHV (d2)(E , Vh(E)) =

= 4
{(

Π1(E) + |τ1(E)|2
)(

−Π2(E) + |τ2(E)|2
)

− |〈τ1(E), τ2(E)〉|2
}

.

If Ē is a tangent crossing configuration with tangent crossing point Vh(Ē),
then ∆h(Ē) = 0 and

∣

∣〈τ1(Ē), τ2(Ē)〉
∣

∣ =
∣

∣τ1(Ē)
∣

∣

∣

∣τ2(Ē)
∣

∣, so that

detHV (d2)(Ē , Vh(Ē)) = 0 .

On the other hand, if V = Vh(Ē) is a crossing point (that is ∆h(Ē) = 0) and
HV (d2)(Ē , Vh(Ē)) is degenerate, then

∣

∣〈τ1(Ē), τ2(Ē)〉
∣

∣ =
∣

∣τ1(Ē)
∣

∣

∣

∣τ2(Ē)
∣

∣, so that
τ1(Ē) and τ2(Ē) are parallel.
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Remark: If v1, v2 are the arc length parameters on their respective orbits, then
the matrix HV (d2)(Ē , ·) is degenerate at a critical point V = Vj(Ē) of d2(Ē , ·)
(not necessarily corresponding to an orbit crossing) if and only if relation

−κ1κ2〈ν1, ∆j〉〈ν2, ∆j〉 + κ1〈ν1, ∆j〉 − κ2〈ν2, ∆j〉 + 1 − |〈τ1, τ2〉|
2

= 0 (23)

holds at E = Ē , where κ1(E), κ2(E) > 0 are the curvatures of the orbits and
ν1(E), ν2(E) the normal vectors at the critical point (see [7]). Note that in this
case |τ1(E)| = |τ2(E)| = 1).

3.4 Regularity of the minimal distance maps d̃h

We shall prove the following result:

Proposition 3. The continuous map E 7→ d̃h(E) is analytic in Ũh and relation
(22) gives a formula to compute its partial derivatives.

Proof. Let Ē ∈ Ũh. If d̃h(Ē) 6= 0 we can prove the existence of the partial
derivatives ∂d̃h/∂Ek using relation

∂dh

∂Ek

(Ē) =

〈

∆̂h(Ē),
∂∆

∂Ek

(Ē , Vh(Ē))

〉

,

the linearity of the scalar product and the linearity of the partial derivatives.
Relation (22) immediately follows for this case, and it gives the local analyticity
of the partial derivatives.

On the other hand the scalar product in the right-hand side of (22) makes
sense also if d̃h(Ē) = 0, but does the derivatives of d̃h exist in such point? We
shall prove that also in this case these derivatives do exist and relation (22)
gives a formula to compute them.

Let Ē ∈ Ũh with d̃h(Ē) = 0. If for a given k the case (ii) of Lemma 1 holds,
then we have dh(Ē + ηêk) > 0 for |η| > 0 small enough. By Lagrange’s theorem
we have

∂+d̃h

∂Ek

(Ē) = lim
η1→0+

d̃h(Ē + η1êk) − d̃h(Ē)

η1
= lim

η1→0+

∂d̃h

∂Ek

(ξk(η1)) =

= lim
η2→0−

∂d̃h

∂Ek

(ξk(η2)) = lim
η2→0−

d̃h(Ē + η2êk) − d̃h(Ē)

η2
=

∂−d̃h

∂Ek

(Ē)

where ξk(η1), ξk(η2) are two points on the segments joining Ē and Ē+ηr êk, with
r = 1, 2. Thus the partial derivative exists and can be computed by relation
(22).

If (i) of Lemma 1 holds we have

lim
η→0

d̃h(Ē + ηêk) − d̃h(Ē)

η
= 0

and the k–th partial derivative of d̃h in Ē exists, it can be computed by relation
(22) and is zero.
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The previous discussion holds for each k = 1 . . . 10, thus all the partial
derivatives of d̃h exist and are locally analytic at each Ē ∈ Ũh. We conclude
that the map d̃h itself is analytic in Ũh.

Remark: The map E 7→ d̃h(E) is not defined at the configurations such that
the vectors τ1 and τ2, tangent to the orbits at the minimum point, are parallel.
The map d̃h cannot be extended even continuously to such a configuration Ē if
the value of the minimal distance dh(Ē) is not zero; actually dh is defined and
continuous at Ē , but in the definition of d̃h we have changed sign to dh in each
neighborhood of its. Nevertheless it is possible to extend continuously d̃h to the
configurations Ē such that τ1 ‖ τ2 provided dh(Ē) = 0, but such an extension
cannot be continuously differentiable, as shown in Appendix 8.3.

4 The uncertainty of the minimal distance

The orbit determination of a celestial body consists in the computation of a
complete set of 6 orbital elements (E, v) (the 5 components of the vector E
determine the orbit configuration in a given reference frame and the scalar v
is a parameter along the orbit) using its observations on the celestial sphere
(e.g. the values of the right ascension and declination). These observations are
affected by errors due to different reasons.

Already in classical orbit determination methods these errors were taken into
account: Gauss’ method (see [8]) provides us with a nominal orbit, solution of
a least squares fit, together with its uncertainty, that can be represented by the
6 × 6 covariance matrix Γ(E,v) = C−1

(E,v), the inverse of the normal matrix

C(E,v) =

[

∂ Ξ

∂(E, v)

]t [
∂ Ξ

∂(E, v)

]

,

where Ξ is the vector of the observational residuals.
The normal matrix defines a quadratic form approximating the sum of the

squares of the residuals (the target function, see [13]). The confidence region,
consisting of the set of possible orbital elements and defined by the target func-
tion, can thus be approximated using the normal matrix. This approximation
gives a confidence ellipsoid centered in the nominal orbit in the 6–dimensional
orbital element space.

We note that the uncertainty of the orbit configuration can be expressed
by the covariance sub–matrix ΓE , consisting of the principal 5 × 5 block of the
matrix Γ(E,v):

Γ(E,v) =

(

ΓE

...
. . . Γv

)

.
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4.1 Covariance of the minimal distance

Given a nominal two–orbit configuration Ē = (Ē1, Ē2), each orbit being taken
with its covariance matrix ΓĒ1

, ΓĒ2
, we compute the uncertainty of the values

of d̃h(Ē) by making the following assumptions:

i) we can approximate the target function with the quadratic function de-
fined by the normal matrix, as explained in the previous section;

ii) we can approximate the map E 7→ d̃h(E) with its linearization around the
nominal configuration Ē ;

iii) the determination of the two orbits are independent .

We expect that the hypotheses i), ii) give reliable results if the observations
used in the orbit determination process do not give rise to a large confidence
region. The hypothesis iii) is quite reasonable if either one of the bodies has
a well determined orbit (e.g. a Solar system planet) or if the two sets of ob-
servations of the two bodies are independent. Using iii) the uncertainty of the
two–orbit configuration Ē can be expressed by the 10 × 10 covariance matrix

ΓĒ =

[

ΓĒ1
0

0 ΓĒ2

]

.

We compute the covariance of d̃h(Ē) by performing a linear propagation of
the matrix ΓĒ (i.e. using assumption ii)):

Γd̃h(Ē) =

[

∂d̃h

∂E
(Ē)

]

ΓĒ

[

∂d̃h

∂E
(Ē)

]t

. (24)

The standard deviation, defined as

σh(Ē) =
√

Γd̃h(Ē),

gives us a way to define a range of uncertainty for d̃h(Ē): if we assume that the
minimal distance d̃h(Ē) is a Gaussian random variable (see [11]), there is a high
probability (∼ 99.7%) that its value is within the interval

Ih(Ē) = [d̃h(Ē) − 3σh(Ē), d̃h(Ē) + 3σh(Ē)] . (25)

Note that the regularity property of the map E 7→ d̃h(E) allows to use the
covariance propagation formula (24) also for a vanishing distance. Furthermore
the intervals (25) give meaningful possible values for the minimal distance d̃h(Ē)
because the latter may assume negative values.
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4.2 Selection of a minimal distance map

The regularization of the minimal distance maps dh allows to eliminate the
problems arising when they vanish; nevertheless this technique produces a sin-
gularity for the configurations such that the tangent vectors τ1, τ2 related to the
corresponding minimum points are parallel.

Furthermore both families of maps, dh and the regularized maps d̃h, present
the same problems at the points (Ē , Vh(Ē)) where the Hessian matrix HV (d2)
is degenerate.

In conclusion, when we want to estimate the uncertainty of the orbit distance
between two Keplerian orbits, we should try to forecast if one of the problems
previously illustrated can actually occur and, according to the results, we should
select to use either the maps dh or the regularized maps d̃h.

Using again a propagation formula, analogous to (24), we are able to compute
the following quantities, useful to study the occurrence of these problems:

a) the uncertainty of the size of the angle between τ1, τ2, given by |τ̂1 ∧ τ̂2|,
for each minimum point;

b) the uncertainty of detHV (d2)(Ē , ·) at all the critical points8;

c) the uncertainty of the mutual node distances d+
nod, d

−

nod at the ascending
and descending mutual node (see (34)); if the uncertainty of the mutual
orbital inclination IM (that we can compute as well) is such that IM

cannot vanish, then dmin is zero (hence one of the dh vanishes) if and only
if one of the mutual node distances is zero. In this way we can control if
there can be intersections between the orbits.

5 Applications to near–Earth asteroids

The near–Earth asteroids (NEAs) are the small bodies of the Solar system with
a perihelion distance q < 1.3 AU.9 During their secular evolution the Keplerian
orbits of these asteroids precess and are subject to deformations, so that they
can cross the orbit of the Earth and become dangerous for our planet.

Up to this date we know almost 3,800 NEAs10. When a new NEA is dis-
covered the uncertainty of its Keplerian orbit may allow an intersection with
the orbit of the Earth, hence it is particularly interesting to estimate the orbit
distance for these objects.

In Table 1 we show the results of the computation of the uncertainty of the
minimal distances for the asteroid Apophis (99942) and the orbit of the Earth.
This NEA has been discovered on June 19, 2004 and has been observed only
for two nights; it has been recovered in December 18, 2004 and then carefully
followed up by the astronomers because the orbit uncertainty allowed a high
probability impact with the Earth in 2029. Later on additional observations,

8note that even a saddle point could bifurcate into two saddle points and one minimum
91 AU (Astronomical Unit) ≈ 149,597,870 Km

10from the Near Earth Objects Dynamic Site (http://newton.dm.unipi.it/neodys)
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including a few precovery observations of March 15, 2004, allowed to exclude
this impact; nevertheless this asteroid is still followed up with interest because
possible resonant returns due to close approaches with the Earth (see [18]) could
lead to an impact in 2036.

Name h d̃h d̃h − 3σh d̃h + 3σh

(99942)a 1 2.8378E-05 -2.3328E-05 8.0084E-05

2 -5.1896E-02 -5.1934E-02 -5.1859E-02

(99942)b 1 4.4323E-05 4.0969E-05 4.7678E-05

2 -5.1885E-02 -5.1887E-02 -5.1883E-02

Table 1: The orbit (99942)a is computed with the set of observations of Apophis (99942)
from the discovery (June 19, 2004) to December 24, 2004. The orbit (99942)b is computed
by adding the precovery observations of March 15, 2004 to the previous set. For each of the
two orbits we have 2 local minima of the Keplerian distance: for the first orbit (99942)a the
uncertainty of the absolute minimum allows crossings with the orbit of the Earth.

We have computed two orbits with their uncertainty for Apophis (99942)
by using the orbit determination software OrbFit11. The first orbit, (99942)a

in the table, has been obtained with the observations from the discovery (June
19, 2004) to December 24, 2004; we have added the precovery observations of
March 15, 2004 to obtain the second orbit, indicated in the table with (99942)b.

In this example we have assumed, for simplicity, that the orbital elements
of the Earth have zero uncertainty; in any case the contribution from the un-
certainty of the Earth trajectory is negligible.

The uncertainty of the first orbit allows a crossing with the orbit of the Earth
as the first local minimum d̃1 can attain the values of the interval [-2.3328E-05,
8.0084E-05] (in AU). On the other hand the orbit distance uncertainty of the
second orbit is such that crossings are excluded.

6 Conclusions and further work

The regularization of the minimal distance maps introduced in this paper allows
to define a meaningful uncertainty of the orbit distance between two Keplerian
orbits even if this uncertainty leads to negative values of the distance. Moreover
the orbit crossing singularity is removed, except for the tangent crossing case.

The reliability of the linearity assumptions done in Section 4.1 still needs to
be investigated. We expect that if the orbit of a recently discovered asteroid
is poorly determined, then these hypotheses could fail, and the results of the
computation of the intervals Ih defined in (25) might be inaccurate.

We plan also to make extensive numerical experiments with a large database
of known asteroids, like the one of the web site ASTDyS12. The classification
of the asteroids based on the nominal orbit distance can change by taking into

11available at the web address http://newton.dm.unipi.it/orbfit
12the Asteroid Dynamic Site (http://hamilton.dm.unipi.it/astdys)
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account the orbit uncertainty and we would like to investigate this feature with
particular care of possible small values of the orbit distance with the Earth.
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8 Appendix

8.1 Maximal number of orbit intersections

We prove the following result:

Proposition 4. Two Keplerian orbits with a common focus cannot intersect
each other in more than two distinct points. Furthermore if the two conics are
coplanar, then there is only one orbit crossing if and only if it is a tangent
crossing.

Proof. If there were more than two intersections, then the two orbits would be
coplanar. Let us consider a parameterization of the two orbits using the true
anomalies v1, v2 and a reference plane in which the x axis is directed towards
the pericenter of the first orbit:

{

x1 = r1 cos v1

y1 = r1 sin v1

{

x2 = r2 [cosω cos v2 − sinω sin v2]
y2 = r2 [sin ω cos v2 + cosω sin v2]

with

r1 =
q1(1 + e1)

1 + e1 cos v1
; r2 =

q2(1 + e2)

1 + e2 cos v2
;

q1, q2 the two pericenter distances, e1, e2 the orbit eccentricities and ω the angle
between the pericenter of the second orbit and the x axis (that is the angular
difference between the two pericenters).

By setting r1 = r2 and x1 = x2 we obtain the two trigonometric equations

q1(1 + e1)(1 + e2 cos v2) = q2(1 + e2)(1 + e1 cos v1) ;

cos v1 = cosω cos v2 − sin ω sin v2 ;

from which we have
C1 cos v2 + C2 sin v2 = C3 (26)

with

C1 = q1(1 + e1)e2 − q2(1 + e2)e1 cosω ;

C2 = q2(1 + e2)e1 sin ω ;

C3 = q2(1 + e2) − q1(1 + e1) ;

21



which gives at most two solutions for the v2 variable. From the crossing relations
x1 = x2 and y1 = y2 we easily see that there is at most one real value of v1

corresponding to a given value of v2 that satisfies both equations.
Using the coordinate change defined by t = tan(v2/2) we find the second

degree equation in the variable t

(C1 + C3)t
2 − 2C2t + (C3 − C1) = 0 , (27)

giving the solutions of (26): its roots are

t1,2 =
C2 ±

√

C2
2 − C2

3 + C2
1

C1 + C3
. (28)

From this relation we can deduce the tangent crossing condition, corresponding
to the vanishing of the discriminant C2

2 − C2
3 + C2

1 :

q2
1(1+e1)

2(e2
2−1)+q2

2(1+e2)
2(e2

1−1)+2q1q2(1+e1)(1+e2)(1−e1e2 cosω) = 0 .

Remark: For two elliptical orbits with semimajor axis a1, a2 the tangent cross-
ing condition can be written as

a2
1(1 − e2

1) + a2
2(1 − e2

2) − 2a1a2(1 − e1e2 cosω) = 0 . (29)

The coordinate change that we have selected does not allow to find the value
v2 = π, that is sent to infinity: note that v2 = π is a solution if and only if
C1 + C3 = 0, that is

q2(1 + e2)(1 − e1 cosω) − q1(1 + e1)(1 − e2) = 0 . (30)

If (30) holds, and v2 = π is a solution, then (27) becomes a linear equation that
can give only one additional value of v2, solution of (26).

8.2 The mutual elements

Let us consider two Keplerian orbits with a common focus, whose configurations
are represented by the cometary elements

E1 = (q1, e1, I1, Ω1, ω1) ; E2 = (q2, e2, I2, Ω2, ω2) (31)

in a given reference frame, that are respectively the pericenter distance, the ec-
centricity, the inclination, the longitude of the ascending node and the pericenter
argument.

If the two orbits are not coplanar we can define the mutual nodal line as
the intersection of the orbital plane; we also define as mutual node each pair of
points on the mutual nodal line, one belonging to the first orbit and the other
to the second, that lie on the same side of the mutual nodal line with respect
to the common focus.
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By assigning an orientation to both orbits, i.e. a normal vector Ni (i = 1, 2)
to each orbital plane we have an ascending and a descending mutual node of the
second orbit with respect to the first one (see Figure 4). We define the cometary
mutual elements

{q1, e1, q2, e2, IM , ω
(1)
M , ω

(2)
M } , (32)

where IM is the mutual inclination, that is the angle between N1 and N2, and

ω
(1)
M , ω

(2)
M are the angles between the ascending mutual node and the pericenters

of the two orbits.

M

ωM

ω

M

z

y

x

(1)

(2)

N

N2

1I

ascending mutual node

Figure 4: We draw some of the mutual elements of two orbits, together with the orientation
vectors N1,N2, that define the mutual inclination IM and the ascending mutual node.

We can express IM , ω
(1)
M , ω

(2)
M as functions of the cometary elements: first

we note that we can select

N1 =





sin Ω1 sin I1

− cosΩ1 sin I1

cos I1



 ; N2 =





sinΩ2 sin I2

− cosΩ2 sin I2

cos I2



 ;

then the mutual inclination IM ∈ [0, π[ is defined by cos IM = 〈N1 ,N2〉.
The unit vectors

Anod =
N1 ∧ N2

|N1 ∧ N2|
(33)

(pointing to the ascending mutual node),

X1 =





cosΩ1 cosω1 − sin Ω1 sinω1 cos I1

sin Ω1 cosω1 + cosΩ1 sinω1 cos I1

sin ω1 sin I1



 ;

X2 =





cosΩ2 cosω2 − sin Ω2 sin ω2 cos I2

sinΩ2 cosω2 + cosΩ2 sin ω2 cos I2

sin ω2 sin I2




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(pointing to the positions of the bodies) give us the mutual pericenter arguments

cosω
(1)
M = 〈Anod ,X1〉 ; sin ω

(1)
M = 〈Anod ×X1,N1〉 ;

cosω
(2)
M = 〈Anod ,X2〉 ; sin ω

(2)
M = 〈Anod ×X2,N2〉 .

The ascending and descending mutual node distances are respectively defined
by

d+
nod =

q1(1 + e1)

1 + e1 cosω
(1)
M

−
q2(1 + e2)

1 + e2 cosω
(2)
M

;

d−nod =
q1(1 + e1)

1− e1 cosω
(1)
M

−
q2(1 + e2)

1 − e2 cosω
(2)
M

.

(34)

8.3 Lack of regularity for τ1 ‖ τ2

In this section we prove that some partial derivatives of the regularized map E 7→
d̃h(E) cannot be continuously extended to the tangent crossing configurations
Ē , even if we can obtain a continuous extension of the map itself to these points
by setting d̃h(Ē) = 0. In particular we shall prove that there are two paths of
configurations, Eα(ε) and Eβ(ε) with ε ∈ [0, ε̄], such that

lim
ε→0+

Eα(ε) = lim
ε→0+

Eβ(ε) = Ē

and

lim
ε→0+

∂d̃h

∂Ek

(Eα(ε), Vh(Eα(ε))) 6= lim
ε→0+

∂d̃h

∂Ek

(Eβ(ε), Vh(Eβ(ε)))

for some element Ek.
This implies that d̃h cannot be continuously differentiable at tangent crossing

configurations.
We shall take into account the case of two elliptic orbits, but the same proof

may be adapted to the case of different conics.
Let us use the set of cometary elements, that is the configuration elements

(31) and the true anomalies v1, v2 as parameters along the orbits. We can
choose the path Eα(ε) in a way that only the pericenter distance of one orbit
changes with ε and we have dh(Eα(ε)) = d̃h(Eα(ε)) = 0 for each ε. Thus we
obtain

lim
ε→0+

∂d̃h

∂Ek

(Eα(ε), Vh(Eα(ε))) = 0 .

Let us select the second path Eβ(ε). Without loss of generality we can choose
a reference frame so that the Cartesian coordinates of the first orbit are

x1 = r1 cos v1 ; y1 = r1 sin v1 ; z1 = 0

with

r1 =
q1(1 + e1)

1 + e1 cos v1
,
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where q1 is the pericenter distance, e1 the eccentricity and v1 the true anomaly.
In the orbit plane we consider the straight line L passing through the tangent

crossing point P , with the direction of the outgoing13 normal n̂ to both conics
(see Figure 5). For each ε > 0 we select a point Pε moving continuously and
monotonically with ε on the line L and such that limε→0 Pε = P . Furthermore
we consider the family of vectors τ2,ε, each obtained by a counter–clockwise
rotation of the tangent vector τ2 of the second orbit at the crossing point around
the axis n̂ by an angle ε. Note that τ2,0 = τ2.

We define the path of orbits Eβ(ε) by changing only the second ellipse with
ε, in a way that for each ε the second orbit shares the same focus with the first,
it passes through Pε and has τ2,ε as tangent vector in Pε (see Figure 5).

y

x
O

n̂
P
Pε

L

2nd orbit

1st orbit

ε τ ε2,

τ2

Figure 5: Sketch of the geometric construction to select the orbit path Eβ(ε).

With this choice of Eβ(ε) the derivatives of d̃h with respect to q1 are given
by the formula

∂d̃h

∂q1
(Eβ(ε)) =

〈

n̂,
∂∆

∂q1
(Eβ(ε), Vh(Eβ(ε)))

〉

where n̂ does not depend on ε, so that

lim
ε→0

∂d̃h

∂q1
(Eβ(ε)) =

〈

n̂,
∂∆

∂q1
(Ē , Vh(Ē))

〉

due to the continuity of ∂∆
∂q1

.

Let v∗ = v
(h)
1 (Ē) be the value of the true anomaly on the first orbit corre-

sponding to the tangent crossing. The components of the vector n̂ = (α, β, 0)
must satisfy

−α sin v∗ + β (cos v∗ + e1) = 0 ;

α2 + β2 = 1 ;

13with respect to the convex area enclosed
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thus, if sin v∗ = 0 then α = 1, β = 0, otherwise

α =
(cos v∗ + e1)

√

1 + 2 e1 cos v∗ + e2
1

; β =
sin v∗

√

1 + 2 e1 cos v∗ + e2
1

.

From the relation
〈

n̂,
∂∆

∂q1

〉

= α
∂x1

∂q1
+ β

∂y1

∂q1

we obtain
〈

n̂,
∂∆

∂q1
(Ē , Vh(Ē))

〉

=
1 + e1

√

1 + 2 e1 cos v∗ + e2
1

6= 0 .
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