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Abstract The radioscience experiment is one of the on board experiment of the Mer-

cury ESA mission BepiColombo that will be launched in 2014. The goals of the experi-

ment are to determine the gravity field of Mercury and its rotation state, to determine

the orbit of Mercury, to constrain the possible theories of gravitation (for example

by determining the post-Newtonian (PN) parameters), to provide the spacecraft posi-

tion for geodesy experiments and to contribute to planetary ephemerides improvement.

This is possible thanks to a new technology which allows to reach great accuracies in

the observables range and range rate; it is well known that a similar level of accuracy

requires studying a suitable model taking into account numerous relativistic effects.

In this paper we deal with the modelling of the space-time coordinate transformations

needed for the light-time computations and the numerical methods adopted to avoid

rounding-off errors in such computations.

Keywords Mercury · Interplanetary tracking · Light-time · Relativistic effects ·

Numerical methods

1 Introduction

BepiColombo is an European Space Agency mission to be launched in 2014, with the

goal of an in-depth exploration of the planet Mercury; it has been identified as one

of the most challenging long-term planetary projects. Only two NASA missions had

Mercury as target in the past, the Mariner 10, which flew by three times in 1974-5 and
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Messenger, which carried out its flybys on January and October 2008, September 2009

before it starts its year-long orbiter phase in March 2011.

The BepiColombo mission is composed by two spacecraft to be put in orbit around

Mercury. The radioscience experiment is one of the on board experiments, which would

coordinate a gravimetry, a rotation and a relativity experiment, using a very accurate

range and range rate tracking. These measurements will be performed by a full 5-way

link [Iess and Boscagli 2001] to the Mercury orbiter; by exploiting the frequency de-

pendence of the refraction index, the differences between the Doppler measurements

(done in Ka and X band) and the delay give information on the plasma content along

the radiowave path. In this way most of the measurements errors introduced can be

removed, improving of about two orders of magnitude with respect to the past tech-

nologies. The accuracies that can be achieved are 10 cm in range and 3 × 10−4 cm/s

in range rate.

How we compute these observables? For example, a first approximation of the range

could be given by the formula

r = |r| = |(xsat + xM) − (xEM + xE + xant)| , (1)

which models a very simple geometrical situation (see Figure 1). The vector xsat is the

mercurycentric position of the orbiter, the vector xM is the position of the center of

mass of Mercury (M) in a reference system with origin at the Solar System Barycenter

(SSB), the vector xEM is the position of the Earth-Moon center of mass in the same

reference system, xE is the vector from the Earth-Moon Barycenter (EMB) to the

center of mass of the Earth (E), the vector xant is the position of the reference point

of the ground antenna with respect to the center of mass of the Earth.
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Fig. 1 Geometric sketch of the vectors involved in the computation of the range. SSB is the
Solar System Barycenter, M is the center of Mercury, EMB is the Earth-Moon Barycenter, E
is the center of the Earth.

Using (1) means to model the space as flat arena (r is an Euclidean distance) and

the time as absolute parameter. This is obviously not possible because it is clear that,

beyond some threshold of accuracy, these quantities have to be formulated within the

framework of Einstein’s theory of gravity (general relativity theory, GRT). Moreover we

have to take into account the different times at which the events have to be computed:

the transmission of the signal at the transmit time (tt), the signal at the Mercury
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orbiter at the time of bounce (tb) and the reception of the signal at the receive time

(tr).

Formula (1) could be a good starting point to construct a correct relativistic for-

mulation; with the word “correct” we do not mean all the possible relativistic effects,

but the effects measurables by the experiment. This paper deals with the corrections

to apply to this formula to obtain a consistent relativistic model for the computations

of the observables and the practical implementation of such computations.

In Section 2 we discuss the relativistic four-dimensional reference systems used

and the transformations adopted to make the sums in (1) consistent; according to

[Soffel et al. 2003], with “reference system” we mean a purely mathematical construc-

tion, while a “reference frame” is a some physical realization of a reference system.

The relativistic contribution to the time delay due to the Sun’s gravitational field, the

Shapiro effect, is described in Section 3. Section 4 describes the theoretical procedure

to compute the light-time (range) and the Doppler shift (range rate). In Section 5

we discuss the practical implementation of the algorithms showing how we eliminate

rounding-off problems.

The equations of motion for the planets Mercury and Earth, including all the rela-

tivistic effects (and potential violations of GRT) required to the accuracy of the Bepi-

Colombo radioscience experiment have already been discussed in [Milani et al. 2009],

thus this paper concentrates on the computation of the observables.

2 Space-time reference frames and transformations

The five vectors involved in formula (1) have to be computed at their own time, the

epoch of different events: e.g., xant, xEM and xE are computed at both the antenna

transmit time tt and the receive time tr of the signal. xM and xsat are computed at

the bounce time tb (when the signal has arrived to the orbiter and is sent back, with

correction for the delay of the transponder). To be able to perform the vector sums

and differences, these vectors have to be converted to a common space-time reference

system, the only possible choice being some realization of the BCRS (Barycentric Ce-

lestial Referece System). We adopt for now a realization of the BCRS that we call SSB

(Solar System Barycentric) reference frame and in which the time is TDB (Barycentric

Dynamic Time); other possible choices, such as a TCB (Barycentric Celestial Time),

only can differ by linear scaling. The TDB choice of the SSB timescale entails also the

appropriate linear scaling of space-coordinates and planetary masses as described for

instance in [Klioner 2008] or [Klioner et al. 2009].

The vectors xM, xE, and xEM are already in SSB as provided by numerical integra-

tion and external ephemerides; thus the vectors xant and xsat have to be converted to

SSB from the Geocentric and Mercurycentric systems, respectively. Of course the con-

version of reference systems implies also the conversion of the time coordinate. There

are three different time coordinates to be considered. The currently published plane-

tary ephemerides are provided in TDB. The observations are based on averages of clock

and frequency measurements on the Earth surface: this defines to another time coordi-

nate called TT (Terrestrial Time). Thus for each observation the times of transmission

tt and receiving tr need to be converted from TT to TDB to find the corresponding

positions of the planets, e.g., the Earth and the Moon, by combining information from

the precomputed ephemerides and the output of the numerical integration for Mercury

and the Earth-Moon barycenter. This time conversion step is necessary for the accurate



4

processing of each set of interplanetary tracking data; the main term in the difference

TT-TDB is periodic, with period 1 year and amplitude ≃ 1.6 × 10−3 s, while there is

essentially no linear trend, as a result of a suitable definition of the TDB.

The equation of motion of a Mercurycentric orbiter can be approximated, to the

required level of accuracy, by a Newtonian equation provided the independent variable

is the proper time of Mercury. Thus, for the BepiColombo radioscience experiment, it is

necessary to define a new time coordinate TDM (Mercury Dynamic Time) containing

terms of 1-PN order depending mostly upon the distance from the Sun and velocity of

Mercury [Milani et al. 2009].

From now on we shall call the quantites related to the SSB frame “TDB-compatible”,

the quantites related to the Geocentric frame “TT-compatible”, and the quantites re-

lated to the Mercurycentric frame “TDM-compatible”, in accordance with the paper

[Klioner et al. 2009], and label them DB, DT and DM, respectively.

The differential equation giving the local time T as a function of the SSB time t ,

which we are currently assuming to be TDB, is the following:

dT

dt
= 1 −

1

c2

[

U +
v2

2
− L

]

, (2)

where U is the gravitational potential (the list of contributing bodies depends upon

the accuracy required: in our implementation we use Sun, Mercury to Neptune, Moon)

at the planet center and v is the SSB velocity of the same planet. The constant term L

is used to perform the conventional rescalings motivated by removal of secular terms,

e.g., for the Earth we use LC .

The space-time transformations we have to perform involve essentially the position

of the antenna and the position of the orbiter. The Geocentric coordinates of the

antenna should be transformed into TDB-compatible coordinates; the transformation

is expressed by the formula

x
DB
ant = x

DT
ant

(

1 −
U

c2
− LC

)

−
1

2

(

vDB
E · xDT

ant

c2

)

v
DB
E ,

where U is the gravitational potential at the geocenter (excluding the Earth mass),

LC = 1.48082686741 × 10−8 is a scaling factor given as definition, supposed to be

a good approximation for removing secular terms from the trasformation and vTDB
E

is the barycentric velocity of the Earth. The next formula contains the effect on the

velocities of the time coordinate change, which should be consistently used together

with the coordinate change:

v
DB
ant =

[

v
DT
ant

(

1 −
U

c2
− LC

)

−
1

2

(

vDB
E · vDT

ant

c2

)

v
DB
E

]

·
[

dT

dt

]

.

Note that the previous formula contains the factor dT/dt (expressed by eq. (2)) that

deals with time transformation: T is the local time for Earth, that is TT, and t is the

corresponding TDB time.

The Mercurycentric coordinates of the orbiter should be transformed into TDB-

compatible coordinates through the formula

x
DB
sat = x

DM
sat

(

1 −
U

c2
− LCM

)

−
1

2

(

vDB
M · xDM

sat

c2

)

v
DB
M ,
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where U is the gravitational potential at the center of mass of Mercury (excluding the

Mercury mass) and LCM could be used to remove the secular term in the time trans-

formation (thus defining a TM scale, implying a rescaling of the mass of Mercury).

We believe this is not necessary: the secular drift of TDM with respect to other time

scales is significant [Milani et al. 2009][Figure 5], but a simple iterative scheme is very

efficient in providing the inverse time transformation. Thus we set LCM = 0, assuming

the reference frame is TDM-compatible. As for the antenna we have a formula express-

ing the velocity transformation that contains the derivative of time T for Mercury, that

is TDM, with rispect to time t, that is TDB:

v
DB
sat =

[

v
DM
sat

(

1 −
U

c2
− LCM

)

−
1

2

(

vTD
M · vTD

sat

c2

)

v
DB
M

]

·
[

dT

dt

]

.

In all the formulas for these coordinate changes we have neglected the terms of the

SSB acceleration of the planet center [Damour et al. 1994], because they contain beside

1/c2 the additional small parameter (distance from planet center)/(planet distance to

the Sun), which is of the order of 10−4 even for a Mercury orbiter.

To assess the relevance of the relativistic corrections of this section to the accuracy

of the BepiColombo radioscience experiment, we have computed the observables range

and range rate with and without these corrections. As shown in Figure 2, the differences

are significant, at a signal-to-noise ratio S/N ≃ 1 for range, much more for range rate,

with an especially strong signature from the orbital velocity of the mercurycentric orbit

(with S/N > 50).

3 Shapiro effect

The correct modelling of space-time transformations is not sufficient to have a precise

computation of the signal delay: we have to take into account the general relativistic

contribution to the time delay due to the spacetime curvature under the effect of the

Sun’s gravitational field, the Shapiro effect [Shapiro 1964]. The Shapiro time delay ∆t

at the 1-PN level is [Will 1993,Moyer 2003]

∆t =
(1 + γ) µ0

c3
ln
(

rt + rr + r

rt + rr − r

)

, S(γ) = c ∆t ;

rt = |rt| and rr = |rr| are the heliocentric distances of the transmitter and the receiver

at the corresponding time instants of photon transmission and reception, µ0 is the

mass of the Sun and r = |rr − rt|. The planetary terms, similar to the solar one, can

also be included but they are smaller than the accuracy needed for our measurements.

Parameter γ is the only post-Newtonian parameter used for the light-time effect and,

in fact, it could be best constraint during superior conjuction [Milani et al. 2002]. The

total amount of the Shapiro effect in range is shown in Figure 3.

The question arises whether the very high signal to noise in the range requires

other terms in the solar gravity influence, due to either (i) motion of the source, or

(ii) higher-order corrections when the radio waves are passing near the Sun, at just a

few solar radii (and thus the denominator in the log-function of the Shapiro formula

is small). The corrections (i) are of the post-Newtonian order 1.5, that is containing

a factor 1/c3, but it has been shown in [Milani et al. 2009] that they are too small to

affect our accuracy. The corrections (ii) are of order 2, that is 1/c4, but they can be
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Fig. 2 The difference in the observables range and range rate for one pass of Mercury above
the horizon for a ground station, by using an hybrid model in which the position and velocity of
the orbiter have not transformed to TDB-compatible quantities and a correct model in which
all quantities are TDB-compatible. Interruptions of the signal are due to spacecraft passage
behind Mercury as seen for the Earth station. Top: for an hybrid model with the satellite
position and velocity not transformed to TDB-compatible. Bottom: for an hybrid model with
the position and velocity of the antenna not transformed to TDB-compatible.

actually larger for an experiment involving Mercury. The relevant correction is most

easily obtained by adding 1/c4 terms in the Shapiro formula, due to the bending of the

light path:

S(γ) =
(1 + γ)µ0

c2
ln

(

rt + rr + r +
(1+γ) µ0

c2

rt + rr − r +
(1+γ) µ0

c2

)

.

This formulation has been proposed by [Moyer 2003] and, recently, it has been justified

in the small impact parameter regime by much more theoretically rooted derivations

by [Klioner and Zschocke 2007], [Teyssandier & Le Poncin-Lafitte 2008] and

[Ashby and Bertotti 2008]. Figure 4 shows that the order 2 correction is relevant for

our experiment, especially when there is a superior conjunction with a small impact

parameter of the radio wave path passing near the Sun. Note that the 1/c4 correction



7

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5
x 10

6 Change in the observable

 time, days from arc beginning

R
an

ge
, c

m

Fig. 3 Total amount of the Shapiro effect in range over 2-year simulation. The sharp peaks
correspond to superior conjunctions, when Mercury is “behind the Sun” as seen from Earth,
with values as large as 24 km for radiowaves passing at 3 solar radii from the center of the
Sun. Interruptions of the signal are due to spacecraft visibility from the Earth station (in this
simulation we assume just one station).

(∼ 10 cm) in the Shapiro formula effectively corresponds to ∼ 3 × 10−5 correction in

the value of the post-Newtonian parameter γ.

The Shapiro correction for the computation of the range rate is:

Ṡ =
2(1 + γ)µ0

c2





−r (ṙt + ṙr) + ṙ
(

rt + rr +
(1+γ)µ0

c2

)

(rt + rr +
(1+γ)µ0

c2 )2 − r2



 .

This formula is almost never found in the literature and has not been much used in the

processing of the past radioscience experiments, such as [Bertotti et al. 2003], because

the observable range rate is typically computed as difference of ranges divided by time;

however, for reasons explained in Section 5, this formula is now necessary.

4 Light-time iterations

Since radar measurements are usually referred to the receive time tr the observables are

seen as functions of this time, and the computation sequence works backward in time:

starting from tr, the bounce time tb is computed iteratively, and, using this information

the transmit time tt is computed.

The vectors xDB
M and xDB

EM are obtained integrating the post-Newtonian equations

of motions. The vectors xDM
sat are obtained by integrating the orbit in the mercurycen-

tric TDM-compatible frame. The vector xDT
ant is obtained from a standard IERS model

of Earth rotation, given accurate station coordinates, and xDT
E from lunar ephemerides

[Milani and Gronchi 2009].

In the following subsections we shall describe the procedure to compute the range

observable (Section 4.1) and the range rate (Section 4.2).
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Fig. 4 Differences in range (top) and range rate (bottom) by using an order 1 and an order
2 post-Newtonian formulation (γ = 1); the correction is relevant for BepiColombo, at least
when a superior conjunction results in a small impact parameter b. E.g., in this figure we
have plotted data assumed to be available down to b ≃ 3R0. For larger values of b the effect
decreases as 1/b2.

4.1 Range

Once the five vectors are available at the appropriate times and in a consistent SSB

system, there are two different light-times, the up-leg ∆tup = tb− tt for the signal from

the antenna to the orbiter, and the down-leg ∆tdown = tr − tb for the return signal.

They are defined implicitly by the distances up-leg and down-leg

rdo(tr) = xsat(tb(tr)) + xM(tb(tr)) − xEM(tr) − xE(tr) − xant(tr) ,

rdo(tr) = |rdo(tr)| , c(tr − tb) = rdo(tr) + Sdo(γ) , (3)

rup(tr) = xsat(tb(tr)) + xM(tb(tr)) − xEM(tt(tr)) − xE(tt(tr)) − xant(tt(tr)) ,

rup(tr) = |rup(tr)| , c(tb − tt) = rup(tr) + Sup(γ) , (4)
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Fig. 5 The difference in the observables range and range rate using a light-time in TT and a
light time in TDB: the difference in range is very high, more than 13 meters in one day, while
the difference in range rate is less than the accuracy of the experiment.

respectively, with somewhat different Shapiro effects. Then tr − tb and tb − tt are the

two portions of the light-time, in the time attached to the SSB, that is TDB; this

provides the computation of tt. Then these times are to be converted back in the time

system applicable at the receiving station, where the time measurement is performed,

which is TT (or some other form of local time, such as the standard UTC). tr is already

available in the local time scale, from the original measurement, while tt needs to be

converted back from TDB to TT. The difference between these two TT times is ∆ttot,

from which we can conventionally define r(tr) = c ∆ttot/2. Note that the difference

∆ttot in TT is significantly different from tr − tt in TDB, by an amount of the order

of 10−7 s, while the sensitivity of the BepiColombo radioscience experiment is of the

order of 10−9 s, thus these conversions change the computed observable in a significant

way, see Figure 5.

The practical method for solving tb(tr) and tt(tr) in Eqs. (3) and (4) is as follows.

Since the measurement is labeled with the receive time tr, the iterative procedure

needs to start from eq. (3) by computing the states xEM, xE and xant at epoch tr,

then selecting a rough guess t0b for the bounce time (e.g., t0b = tr). Then the states xsat

and xM are computed at t0b and a successive guess t1b is given by (3). This is repeated

computing t2b , and so on until convergence, that is, until tkb − tk−1
b is smaller than the

required accuracy. This fixed point iteration to solve the implicit equation for tb is

convergent because the motion of the satellite and of Mercury, in the time tr − tb, is

a small fraction of the total difference vector. After accepting the last value of tb we

start with the states xsat and xM at tb and with a rough guess t0t for the transmit

time (e.g., t0t = tb). Then xEM, xE and xant are computed at epoch t0t and t1t is given

by eq. (4), and the same procedure is iterated to convergence, that is to achieve a

small enough tkt − tk−1
t . This double iterative procedure to compute range is consistent

with what has been used for a long time in planetary radar [Yeomans et al. 1992]. We

conventionally define r = (rdo + Sdo + rup + Sup)/2.
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4.2 Range rate

After the two iterations providing at convergence tb and tt are complete, we can proceed

to compute the range rate. We rewrite the expression for the Euclidean range (down-leg

and up-leg) as a scalar product:

r2
do(tr) = [xMs(tb) − xEa(tr)] · [xMs(tb) − xEa(tr)] ,

r2
up(tr) = [xMs(tb) − xEa(tt)] · [xMs(tb) − xEa(tt)]

where xMs = xM +xsat and xEa = xEM +xE +xant. The light-time equation contains

also the Shapiro terms, thus the range rate observable contains also additive terms Ṡdo

and Ṡup, with significant effects (a few cm/s during superior conjuctions). Since the

equations giving tb and tt are still (3) and (4), in computing the time derivatives, we

need to take into account that tb = tb(tr) and tt = tt(tr), with non-unit derivatives.

Computing the derivative with respect to the receive time tr, and using the dot

notation to stand for d/dtr, we obtain:

ṙdo(tr) = r̂do

[

ẋMs(tb)

(

1 −
ṙdo(tr) + Ṡdo

c

)

− ẋEa(tr)

]

, (5)

ṙup(tr) = r̂up

[

ẋMs(tb)

(

1 −
ṙdo(tr) + Ṡdo

c

)

−

ẋEa(tt)

(

1 −
ṙdo(tr) + Ṡdo

c
−

ṙup(tr) + Ṡup

c

)

]

(6)

where

r̂do =
1

rdo(tr)
(xMs(tb) − xEa(tr))

and

r̂up =
1

rup(tr)
(xMs(tb) − xEa(tt)) .

However, the contribution of the time derivatives of the Shapiro effect to the d tb/d tr
and d tt/d tr corrective factors is small, of the order of 10−10, which is marginally

significant for the BepiColombo radioscience experiment. We conventionally define

ṙ = c(1 − ṫt)/2 = (ṙdo + Ṡdo + ṙup + Ṡup)/2. These equations are compatible with

[Yeomans et al. 1992], taking into account that they use a single iteration.

Since the time derivatives of the Shapiro effects contain ṙt and ṙr the equations (5)

and (6) are implicit, thus we can again use a fixed point iteration. It is also possible

to use a very good approximation which solves explicitly for ṙdo and then for ṙup,

neglecting the very small contribution of Shapiro terms:

ṙdo = r̂do ·

[

ẋMs(tb)

(

1 −
Ṡdo

c

)

− ẋEa(tr)

] [

1 +
ẋMs(tb) · r̂do

c

]

−1

where the right hand side is weakly dependent upon ṙdo only through Ṡdo, thus a

moderately accurate approximation could be used in the computation of Ṡdo, followed
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by a single iteration. For the other leg

ṙup(tr) = r̂up ·

[

ẋMs(tb)

(

1 −
ṙdo(tr) + Ṡdo

c

)

− ẋEa(tt)

(

1 −
ṙdo(tr) + Ṡdo

c
−

Ṡup

c

)]

[

1 −
ẋEa(tt) · r̂up

c

]

−1

.

All the above computations are in SSB with TDB; however, the frequency mea-

surements, at both tt and tr, are done on Earth, that is with a time which is TT. This

introduces a change in the measured frequencies at both ends, and because this change

is not the same (the Earth having moved by about 3 × 10−4 of its orbit) there is a

correction needed to be performed. The quantity we are measuring is essentially the

derivative of tt with respect to tr, but this in two different time systems: for readability,

we use T for TT, t for TDB

dTt

dTr
=

dTt

dtt

dtt
dtr

dtr
dTr

,

where the derivatives of the time coordinate changes are the same as the right hand

sides of the differential equation giving T as a function of t in the first factor and the

inverse of the same for the last factor. However, the accuracy required is such that the

main term with the mass of the Sun µ0 and the position of the Sun x0 is enough:

dTt

dTr
=

[

1 −
µ0

|xE(tt) − x0(tt)| c2
−

|ẋE(tt)|
2

2 c2

]

dtt
dtr

[

1 −
µ0

|xE(tr) − x0(tr)| c2
−

|ẋE(tr)|2

2 c2

]

−1

. (7)

Note that we do not need the LC constant term discussed above because it cancels in

the first and last terms in the right hand sides of Eq. (7). The correction in the above

formula is required for consistency, but in fact the correction has an order of magnitude

of 10−7 cm/s and is negligible for the sensitivity of the BepiColombo radioscience

experiment (Figure 5).

5 Numerical problems and solutions

The computation of the observables, as presented in the previous section, is already

complex, but still the list of subtle technicalities is not complete.

A problem well known in radioscience is that for top accuracy the range rate mea-

surement cannot be the instantaneous value ṙ(tr) = (ṙdo(tr) + Ṡdo + ṙup(tr) + Ṡup)/2.

In fact, the measurement is not instantaneous: an accurate measure of a Doppler effect

requires to fit the difference of phase between carrier waves, the one generated at the

station and the one returned from space, accumulated over some integration time ∆,

typically between 10 and 1000 s. Thus the observable is really a difference of ranges

ṙ∆(tr) =
r(tb + ∆/2) − r(tb − ∆/2)

∆
(8)

or, equivalently, an averaged value of range rate over the integration interval

ṙ∆(tr) =
1

∆

∫ tb+∆/2

tb−∆/2

ṙ(s) ds . (9)
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In order to understand the computational difficulty we need to take also into ac-

count the orders of magnitude. As said in the introduction, for state of the art tracking

systems, such as those using a multi-frequency link in the X and Ka bands, the accu-

racy of the range measurements can be ≃ 10 cm and the one of range-rate 3 × 10−4

cm/s (over an integration time of 1 000 s). Let us take an integration time ∆ = 30

s, which is adequate for measuring the gravity field of Mercury; in fact if the orbital

period is ≃ 8 000 s, the harmonics of order m = 26 have periods as short as ≃ 150 s.

The accuracy over 30 s of the range rate measurement can be, by Gaussian statistics,

≃ 3×10−4
√

1 000/30 ≃ 17×10−4 cm/s, and the required accuracy in the computation

of the difference r(tb+∆/2)−r(tb−∆/2) is ≃ 0.05 cm. The distances can be as large as

≃ 2×1013 cm, thus the relative accuracy in the difference needs to be 2.5×10−15. This

implies that rounding off is a problem with current computers, with relative rounding

off error of ε = 2−52 = 2.2 × 10−16; extended precision is supported in software, but

it has many limitations. The practical consequences are that the computer program

processing the tracking observables, at this level of precision and over interplanetary

distances, needs to be a mixture of ordinary and extended precision variables. Any

imperfection may result in “banding”, that is residuals showing a discrete set of values,

implying that some information corresponding to the real accuracy of the measurements

has been lost in the digital processing.

As an alternative, the use of a quadrature formula for the integral in eq. (9) can

provide a numerically more stable result, because the S/N of the range rate measure-

ment is ≪ 1/ε. Figure 5 shows that a very small model change, generating a range

rate signal ≤ 2 micron/s over one pass, can be computed smoothly by using a 7 nodes

Gauss quadrature formula.

6 Conclusions

By combining the results of the previous paper [Milani et al. 2009] and of this one, we

have completed the task of showing that it is possible to build a consistent relativistic

model of the dynamics and of the observations for a Mercury orbiter tracked from the

Earth, at a level of accuracy and self-consistency compatible with the very demanding

requirements of the BepiColombo radioscience experiment.

In particular, in this paper we have given the algorithm definitions for the compu-

tation of the observables range and range rate, including the reference system effects

and the Shapiro effect. We have shown which computation can be performed explic-

itly and which ones need to be obtained from an iterative procedure. We have also

shown how to push these computations, when implemented in a realistic computer

with rounding-off, to the needed accuracy level, even without the cumbersome usage

of quadruple precision. The list of “relativistic corrections”, assuming we can distin-

guish their effects separately, is long, and we have shown that many subtle effects are

relevant to the required accuracy. However, in the end what is required is just to be

fully consistent with a post-Newtonian formulation to some order, to be adjusted when

necessary. In fact, the Moyer’s correction to the Shapiro effect in range is the only

second order effect we have found to be necessary in our model.

Acknowledgements The research presented in this paper, as well as in the previous one
[Milani et al. 2009], has been performed within the scope of the contract ASI/2007/I/082/06/0



13

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.2

−0.1

0

0.1

0.2
Change in the observable

 time, seconds from arc beginning

R
an

ge
, c

m

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−6

−4

−2

0

2

4
x 10

−4

 time, seconds from arc beginning

R
an

ge
−

ra
te

, c
m

/s

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.2

−0.1

0

0.1

0.2
Change in the observable

 time, seconds from arc beginning

R
an

ge
, c

m

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−4

 time, seconds from arc beginning

R
an

ge
−

ra
te

, c
m

/s

Fig. 6 Range and range rate differences due to a change by 10−11 of the C22 harmonic
coefficient. Top: the range rate computed as range difference divided by the integration time of
30 s, eq. (8), is obscured by the rounding off. Bottom: the range rate computed as an integral,
eq. (9), is smooth; the difference is marginally significant with respect to the measurement
accuracy.
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