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ABSTRACT

The number and performance of the sensors to be used
for a survey is a function of the minimum number of ob-
servations required to determine an orbit. This is critical
for the definition of the sensor network and the observa-
tion planning.

Our goal is to obtain an orbit with a smaller number of
observations with respect to the classical methods, such
as Gauss/Laplace. In the context of space debris surveys,
the goal is a full 6-elements orbit from just 2 tracklets,
which could be obtained with only 2 exposures. The in-
formation contained in a tracklet can be summarized in a
4-dimensional vector called attributable, thus two track-
lets are enough for the orbit determination problem to be
over-determined.

We have proposed an algorithm based upon the integrals
of the 2-body problem. We outline the equations and
the solution methods which are used in our implemen-
tation. We report on the results of a validation test, based
upon the processing of one year of data from ESA Op-
tical Ground Station. We conclude that the method is
very effective and can be used to find correlations be-
tween tracklets, to be confirmed with additional corre-
lations, thus providing a catalog of full 6-elements orbits.

Key words: orbit determination; correlation; integrals of
motion.

1. INTRODUCTION

To convert a set of astrometric observations into a catalog
of orbits of satellites and space debris we have to solve the
problem ofcorrelation, that is to find which data belong
to the same physical object. This is strictly analogous to
the problem calledidentificationin the context of aster-
oid surveys [6]. The problem could be difficult because of
the nonlinear nature of the underlying dynamical system
and of the high computational complexity. Thus there is a
trade-off between using a more computationally aggres-
sive correlation/identification method and tightening the

requirements on the amount and distribution in time of
the observational data.

When using observations already stored, there is no
choice but trying to extract as much results, that is cor-
relations and good orbits, as it is possible from the avail-
able data: this is one reason why there has been signif-
icant progress in the definition and testing of algorithms
for asteroid identification, and the technological transfer
of these to the correlation problem for debris is possi-
ble. On the contrary, when designing a new survey, it
is necessary to include the requirements on the correla-
tion and orbit determination procedure. In this case, the
trade-off between using more aggressive correlation al-
gorithms and building an observing network with higher
performance clearly turns in favor of the first option.

This is the reason why we have been trying to convert
our expertise on asteroid identification and orbit determi-
nation into the corresponding capabilities for correlation
of space debris. We have asked for the opportunity to
use an existing data set of observations from ESA Opti-
cal Ground Station to validate our algorithms, taking into
account that of course the observation scheduling cannot
have been optimal for our methods. We thank the Univer-
sity of Bern (in particular T. Schildknecht) and ESA for
providing these data and for supporting our research.

2. OBSERVATIONS AND ATTRIBUTABLES

How are the observations of debris obtained and what is
their information content?

In the special case of a survey of the geosynchronous re-
gion the observations can be taken by stopping the tele-
scope motor, thus in a reference frame body-fixed with
the Earth. Then the stars appear as long trails, the nearly
geostationary objects as very short ones or even points,
the other debris as medium to long trails. The ends of all
trails are measured: the ones of the stars are used for as-
trometric reduction, the ones for the moving objects are
converted into two positions taken at the beginning and
the end of the exposure, forming atracklet. This tech-
nique has been known for a long time: for an example,
see [2, Fig. 1, 2].
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Figure 1. Validation dataset: 2007 tracklets from ESA
OGS, pre-processed by University of Bern and converted
to DES. Angles are in a body-fixed altazimutal reference.
Angular velocity is represented by the motion in 1/4 hour.
The blue line is the geostationary line (where GEO with
e = I = 0 are found).

The data we have used have been obtained by the ESA
Optical Ground Station (OGS) at Teide Observatory (Ca-
nary Islands) in the year 2007. They were collected in a
survey targeted at the geosynchronous belt, although of
course objects in different orbits were incidentally im-
aged; the region being surveyed was a belt above and
below thegeosynchronous line, where exactly circular,
equatorial and geosynchronous orbits could be seen from
the OGS location. Fig. 1 shows a global view of this data
set in a body-fixed reference frame.

After astrometric reduction performed by University of
Bern, the data have been converted to a Data Exchange
Standard (DES), defined by us in collaboration with
the next generation asteroid surveys Pan-STARRS and
LSST, thus it is expected to become ade factostandard
for asteroid observations [10].

When these data are converted into aninertial sidereal
frame, defined by the star catalog used, the information
content of the tracklet is equivalent to anattributable[8],
that is a 4-dimensional vector

A = (α, δ, α̇, δ̇)

with two angular coordinates (e.g., right ascension and
declination) and their time derivatives, all referred to the
average timēt of the exposure. The topocentric distance
ρ and its time derivativėρ remain completely unknown.

Note that evenα̇, δ̇ are well determined: in the inertial
frame the Geosynchronous Earth Orbits (GEO) move by
900 arcsec/min and we can have≃ 10 × 2 bits of addi-
tional information with respect to the position only.

A set of observations giving an attributable is not enough
to compute an orbit, unless some restrictive hypothesis is

used. In fact with these data we have a 2-dimensional
manifold of possible orbits that give exactly the same
attributable at a given time. Thus to complete an orbit
we need either to assume 2 coordinates, or to set 2 con-
straints, e.g., assuming acircular orbit, that is a good ap-
proximation for geostationary objects but not for geosyn-
chronous ones, which may have a significant eccentricity.

To define an orbit given the attributableA we need to
find the values of the topocentricrangeρ andrange-rate
ρ̇, that, together with the attributable, give us a set ofat-
tributable orbital elements

X = [α, δ, α̇, δ̇, ρ, ρ̇] = [A, ρ, ρ̇]

at a timẽt, computed from̄t taking into account the light-
time correction:t̃ = t̄ − ρ/c. The Cartesian geocentric
position and velocity(r, ṙ) can be obtained, given the ob-
server geocentric positionq at time t̄, by using the unit
vectorρ̂(A) in the direction of the observation:

r = q + ρ ρ̂(A) , ṙ = q̇ + ρ̇ ρ̂(A) + ρ
dρ̂(A)

dt
.

Thus the question is the correlation problem: given two
attributablesA1, A2 at different times̄t1, t̄2, can they be-
long to the same orbiting object? And if this is the case,
how can we find an orbit fitting both data sets? Note we
are not assuming the time differencet̄2 − t̄1 is small: it
could even be several days, that is several orbital periods
for a GEO.

3. THE KEPLERIAN INTEGRALS METHOD

We assume that the orbit betweent̃1 and t̃2 is well ap-
proximated by a Keplerian 2-body orbit, with constant
angular momentum vectorc and energyE . Their expres-
sions for a given attributableA are

c(ρ, ρ̇) = r × ṙ = Dρ̇ + Eρ2 + Fρ + G

where the vectorsD,E,F,G are obtained from vector
products of the known vectorsq, ρ̂, q̇, dρ̂/dt, and

2E(ρ, ρ̇) = ρ̇2+c1ρ̇+c2ρ
2+c3ρ+c4−

2 µ⊕
√

ρ2 + c5ρ + c0

whereµ⊕ is the mass of the Earth times the gravitational
constant, and the coefficientscj , j = 0, 5 are obtained
from scalar products of the known vectorsq, ρ̂, q̇, dρ̂/dt.
If we assume that the valuesEj , cj at time t̃j are com-
puted fromAj with unknownsρj , ρ̇j , then fromc1 = c2

we get

c1 = c2 ⇐⇒ D1ρ̇1 − D2ρ̇2 = J(ρ1, ρ2)

whereJ(ρ1, ρ2) is quadratic in the unknown ranges. By
scalar product withD1 × D2 we eliminateρ̇1, ρ̇2 and
obtain the scalar algebraic equation of degree 2:

D1 × D2 · J(ρ1, ρ2) = q(ρ1, ρ2) = 0 .



Geometrically, this equation defines a conic section in the
(ρ1, ρ2) plane, in most cases a hyperbola.

By the formula givingρ̇1, ρ̇2 as a function ofρ1, ρ2 de-
rived from the angular momentum equations, the energies
E1, E2 can be considered as functions ofρ1, ρ2 only. If we
assume that the energy and angular momentum att̃1 and
t̃2 are the same, then we get the system of 2 equations in
2 unknowns:

{

E1(ρ1, ρ2) − E2(ρ1, ρ2) = 0

q(ρ1, ρ2) = 0
.

These equations were already present in [11] for Earth
satellites: they proposed a Newton-Raphson method to
solve the system, but this results into a loss of control on
the number of alternate solutions. [5] have applied the
same equations to the asteroid problem, and proposed a
different approach to the solution of the system.

The energy equation isalgebraic, but not polynomial, be-
cause there are denominators containing square roots. By
squaring twice it is possible to obtain a polynomial equa-
tionp(ρ1, ρ2) = 0: the degree of this equation is 24. Thus
the system

{

p(ρ1, ρ2) = 0

q(ρ1, ρ2) = 0

has exactly 48 solutions in the complex domain, counting
them with multiplicity. Of course we are interested only
in solutions withρ1, ρ2 real and positive, moreover the
squaring of the equations introduces spurious solutions.
Nevertheless, we have found examples with up to 11 non-
spurious solutions.

We need a global solution of the algebraic system of over-
all degree48, providing at once all the possible couples
(ρ1, ρ2). This is a classical problem of algebraic ge-
ometry, which can be solved with theresultant method:
we can build an auxiliary Sylvester matrix, in this case
22 × 22, with coefficients polynomials inρ2, and its de-
terminant, the resultant, is a polynomial of degree48 in
ρ2 only. The values ofρ2 appearing in the solutions of
the polynomial system are the roots of the resultant [3].

The computation of the resultant is numerically unstable,
because the coefficients have a wide range of orders of
magnitude: we had to use quadruple precision. Once the
resultant is available, there are methods to solve the uni-
variate polynomial equations, providing at once all the
complex roots with rigorous error bounds [1]. Given all
the roots which could be real, we solve for the other vari-
ableρ1, select the positive couples(ρ1, ρ2) and remove
the spurious ones due to squaring. If the number of re-
maining solutions is0, we can assume the tracklets are
not correlated.

The procedure above is somewhat slow, because ex-
tended precision is emulated in software. Moreover, for
M tracklets we need to run the algorithmM2/2 times.
However, this computation is trivially parallelizable: for
≃ 3172 tracklets we used 6 cores of standard CPUs to

complete the computation in less than 2 hours. Neverthe-
less, we are working to improve the computational speed,
with the goal of proposing a final algorithm which is sub-
stantially faster, therefore suitable for much large data
sets.

4. PRELIMINARY ORBITS

Once the distances(ρ1, ρ2) are available,(ρ̇1, ρ̇2) are
computed from the angular momentum equations and the
values of attributable elements can be obtained for the
epochs̃t1 andt̃2, and they can be converted into the usual
Keplerian elements:

(aj , ej , Ij , Ωj , ωj , ℓj) , j = 1, 2

whereℓj = nj (t̃j − t0j) are the mean anomalies. How-
ever, the first four Keplerian elementsaj , ej , Ij , Ωj are
functions of the 2-body energy and angular momentum
vectorsEj, cj , and these are the same forj = 1, 2. Thus
the result is

V = (a, e, I,Ω, ω1, ℓ1, ω2, ℓ2)

and there arecompatibility conditionsto be satisfied if the
two attributables belong to the same object:

ω1 = ω2 , ℓ1 = ℓ2 + n(t̄1 − t̄2) .

We cannot check the exact equality in the formulae
above, because of various error sources, including the
astrometric uncertainty of the attributable, especially the
1/1000 fractional error iṅα, δ̇, and the perturbations on
the Keplerian integrals mostly due to the second har-
monic of the Earth’s gravity field and the lunisolar tidal
attraction.

The multiple orbits obtained from the solutions of the al-
gebraic problem are justpreliminary orbits, solution of
a 2-body approximation (as in the classical methods of
Laplace and Gauss).

In our method the preliminary orbits are endowed with a
covariance matrixwhich is obtained by propagating the
available8 × 8 covariance matrix of(A1, A2) to the co-
variance matrix of the 8-vectorV . With another simple
transformation, this provides a2 × 2 covariance matrix
for the compatibility conditions on the variablesωj , ℓj.
Thus we can compute aχ2 value for the discrepancy of
the compatibility conditions, and use this as quality con-
trol parameter, that is we accept the output as preliminary
orbit if and only if χ ≤ χmax; in our tests we have used
values ofχmax between 5 and 10.

We have validated this algorithm by running it on the
3172 tracklets from the 2007 OGS observations. We have
limited the time interval to|t̄2 − t̄1| ≤ 10 days, to avoid
the excessive accumulation of perturbations making the
2-body preliminary orbit a poor approximation; we do
not yet know what is the maximum usable time span.



The accepted preliminary orbits are used as starting guess
for differential corrections; if they are convergent, we ac-
cept the 2-tracklet correlation with the orbit from the least
squares fit.

5. CORRELATION CONFIRMATION

With our method we have found 363 correlations of 2
tracklets, with 378 accepted orbits. However, these need
to be confirmed, because a least squares solution with 8
equations in 6 unknowns is weak, and the fit could be
good even for a false correlation. Not to speak of the 15
cases with two significantly different orbits, where we do
not know how to choose among the 2.

Correlation confirmationis best obtained by looking for
a third tracklet which can also be correlated to the other
2; this process is calledattribution [6, 8]. From the avail-
able 2-tracklet orbits with covariance we predict the at-
tributableAP at the timet̄3 of the third tracklet, and
compare with the attributableA3 computed from the third
tracklet. Since bothAp andA3 come with a covariance
matrix, we can compute theχ2 of the difference and use it
as a test. For the attributions passing this test we proceed
to the differential corrections [9].

The procedure isrecursive, that is we can use the 3-
tracklet orbit to search for attribution of a fourth tracklet,
and so on. This generates a very large number of many-
tracklet orbits, but there are many duplications, corre-
sponding to adding the tracklets in a different order.

By correlation managementwe mean a procedure to re-
move duplicates (e.g.,A = B = C andA = C = B)
and inferior correlations (e.g.,A = B = C is superior to
bothA = B and toC = D, thus both are removed). The
output catalog after this process is called normalized. In
the process, we may try to merge two correlations with
some tracklets in common, by computing a common or-
bit fitting all the data; this process is found to succeed
sometimes, but not always.

The output of our test with the 2007 OGS data, after
correlation management, included 206 correlations (with
220 orbits). Of these, 112 were not confirmed, that is
limited to two tracklets, therefore the orbit is weakly con-
strained and the correlation itself is not fully reliable.

T 2 3 4 5 6 7 8 9 10 12
C 112 40 29 10 3 5 3 1 1 1

Table 1. C is the number of correlations found with T
tracklets.

Out of 3172 input tracklets, 464 have been correlated,
2708 left uncorrelated. The 2007 observations were not
scheduled to allow for orbit determination of all the ob-
jects.

Of course we have no way to know how many should
have been correlated, that is how many physically dis-

tinct objects are there: in particular, objects re-observed
at intervals longer than 10 days have escaped correlation.

6. POPULATION ASSESSMENT

Do the results of the previous section correspond to a rea-
sonable population model?
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Figure 2. Orbits determined with our method projected
on the(a, e) plane: the green lines indicate apocenter (on
the left) and pericenter (on the right) at the geostationary
altitude. The GTO are on the apocenter line.

The population which is observed by surveying around
the geostationary line (see Fig. 1) contains geostationary
objects, with low values ofe andI and geosynchronous
(or almost) objects which could have a significante and
I, including some very high values which could occur for
large Area/Mass (A/M) as a result of radiation pressure
[12].

Some of the observed tracklets also belong to objects in
orbits with semimajor axis very different from the one of
the GEO: as an example there could be Geosynchronous
Transfer Orbits (GTO). The latter can be easily identi-
fied because they should have an apocenter at the geosyn-
chronous altitude (or almost).

The orbits in the(a, e) plane (Fig. 2) show a concentra-
tion of GEO, including some with highe.

The orbit with pericenter well above the geosynchronous
height is a non confirmed correlation which is likely to be
false. Indeed, one of the two tracklets can be correlated
with another one, giving a GTO orbit. This is a good
example of the fact that uncorrelated correlations should
not be trusted, although many of them could be true.

Fig. 3 shows that there are two groups of orbits with
e ≃ 0.32 ande ≃ 0.41, and they also correspond to a
quite large inclination:I ≃ 17◦.5 andI ≃ 10◦. These
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Figure 3. Orbits from our method projected on the(I, e)
plane: the red dots are nearly geosynchronous orbits,
with a within 700 km from the geosynchronous value.
The few GEO orbits with highe andI should have high
area/mass ratio.

values could be reached in few years by originally geosta-
tionary debris provided they have A/M of the order of20
m2/kg [12, Fig. 3, 6]. The two groups of orbits actually
correspond just to two objects, because the correlation
was not achieved. For the values of A/M cited above,
the radiation pressure perturbation is much larger than
the ones due to Earth’s spherical harmonics, the Moon
and the Sun. Thus a least squares fit over a time span
of many days must necessarily fail, unless we have a ra-
diation pressure model. For now we have only order of
magnitude guesses for the radiation pressure model pa-
rameters, including A/M (and other parameters, since the
shapes are certainly not spherical). If we had a much
larger data set of observations we could estimate the val-
ues of these parameters and presumably correlate all the
observations of these two objects.

Fig. 2 clearly shows a number of GTO orbits: from Fig. 3
we can check that they have moderate inclinations.

Fig. 3 also shows an apparent lack of really geostation-
ary orbits, with lowe andI: actually there is only one
orbit with e < 0.01 andI < 2◦. This is due to the fact
that the survey conducted by the OGS in 2007 had the
purpose of discovering new objects, and the geostation-
ary objects are mostly active satellites, whose orbits and
ephemerides are known. Thus the fields of view were on
purpose avoiding the geostationary line of Fig. 1.

Fig. 4 and 5 show the distribution of eccentric-
ity/inclination versus intrinsic luminosity of the objects,
the latter described in the absolute magnitude scale. Un-
fortunately it is not easy to convert an absolute magni-
tude into a size, because of the wide range of albedo val-
ues and also because of irregular shapes. However, if we
could assume albedo0.1 and a spherical shape, we would
get a diameter ranging between10 m and≃ 30 cm for
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Figure 4. Orbits from our method projected on the(e, H)
plane, whereH is the absolute magnitude.H = 28
would correspond to about10 m diameter,H = 33 to 1
m, if the shape was spherical and albedo was0.1, like the
one of the average asteroid. The largest objects should
be satellites (lower left) and rocket stages (lower right).

the correlated objects. Thus the largest objects should
be satellites (at lowe) and rocket stages (near GTO), the
smallest are certainly debris.
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Figure 5. Orbits determined with our method projected
on the(I, H) plane. There is a geosynchronous popula-
tion with moderately high inclination, and a wide range
of sizes.

The existence of objects with highe and alsoI was al-
ready well known, what is interesting is that some of
these have a quite large cross section. To understand the
dynamics of such objects is a challenge, which requires
advanced models and a good data set of both astrometry
and photometry.



7. CONCLUSIONS AND FUTURE WORK

1. We have developed and validated with one year of
OGS data an innovative and more aggressive or-
bit determination method, allowing to usejust one
tracklet per night(for GEO, one exposure). The
time span between two tracklets can be as long as
10 days. The orbits are complete, with 6 elements.

2. We findhundreds of correlations, even in a dataset
which was taken without following a strategy opti-
mized for orbit determination. The resulting orbits
make sense, thus most of them should be right, al-
though a few may be wrong (especially the ones not
confirmed by correlating a third tracklet).

3. The resulting catalog of orbits is not yet in a 1-1 cor-
respondence with real objects, because objects ob-
served too far apart in time cannot be fit to a purely
gravitational orbit. This phenomenon is especially
relevant for large area/mass objects (with A/M= 1
m2/kg, the radiation pressure is as important as the
J2 perturbation).

4. The scheduling of the next generation debris survey
can be based on the assumption that just one tracklet,
providing a good attributable, is required for each
object and for each night. For a given telescope per-
formance, the classical methods based upon three
exposures per night require more telescopes. For a
method requiring 2 tracklets per night, see the paper
by Tommei et al. in these proceedings.

5. The same method can be applied to MEO/HEO or-
bits, provided the exposure (with sidereal tracking)
is long enough to give the angular velocitiesα̇, δ̇
with good accuracy. By using 1 second exposure
this is not the case, then a tracklet requires two ex-
posures. Apart from this, there is nothing in our
method specific for GEO.

6. The same method, or a conceptually similar one,
can be applied with radar data, provided the radar
measures the quantities(ρ, ρ̇, α, δ), a 4-dimensional
radar attributable, with all components accurate
enough. The equations are actually easier than for
optical data [7, 4]. We have not tested this, also be-
cause we have not yet been supplied with validation
data.
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